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Abstract

A simple scaling model known as the fractional G#ars noise is often chosen for
the description of several annual (and of largergles hydroclimatic processes
exhibiting the Hurst phenomenon. An important cheamastic of such model is the
induced large statistical bias, i.e. the deviatmfna statistical characteristic (e.qg.
variance) from its theoretical discretized valueodtl studies in literature perform
stochastic modelling by equating the sampling sdamder dependence structure with
the expected value of the estimator of a stochastidel. However, this is justified only
when many realizations (i.e. many time series) sihgle process are available. In case
where we have a single realization we should mdtel mode estimator of the
dependence structure of the desired stochastic Imodeead, otherwise we may
overestimate the extremeness of a realization,flead event. In this study, we show
an innovative way of handling the statistical bias an fGn process when analyzing
one time series. Particularly, we conduct a thohoMgnte-Carlo analysis based on the
climacogram (i.e., marginal distribution of a schfgrocess, with focus on the second
central moment of variance that is shown to beléhst uncertain from the rest central
moments) of an fGn process and we propose to edoatg5% quartile (and not the
expected) value of the modeled climacogram withsdw@pling one to correctly adjust
the model for bias.
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1 Introduction

Many hydrological and geophysical phenomena cafmotadequately simulated using solely
deterministic processes. The debate of long tenperidence structure in geophysical processes rather
than short term has raised the scientific inteneghe last decades [1]. Also, normally distributed
processes that are of high significance in Hydrplagd beyond, since the annual (or larger) scale of
hydroclimatic processes (whose distribution is velgse to the Gaussian one based on the Central
Limit Theorem) is often used for climatic analysasd water resources management. A simple
stochastic model that incorporates both the poasrdrop of correlation vs. scale (else known as
long-term persistence if viewed through lags [2]Hurst-Kolmogorov behaviour -HKb- if viewed
through scales [3]) and Gaussian distribution @&tests known as the fractional Gaussian noise [4].

The detection of long term persistence is sometidiiisult since it requires many data in order
to be adequately examined. In order to estimatéitie a stochastic metric is employed known as the
climacogram, i.e. variance of the time-averagedc@se over averaging time scale [5], which is
preferred over the autocorrelation and power spettdue to its smaller statistical uncertainty [6].
The analysis presented here can be easily apglittetautocorrelation, power spectrum or any other
stochastic metric of the dependence structure.myportant note is that the concept of climacogram
can be applied to other type of moments such aKthmments introduced and applied in [7] (or
other such as raw, L-moments etc., as mention§tinbut also to other order of moments (such as
the mean, skewness, kurtosis etc.). Neverthelesssi been shown that for HK processes the 2nd-
order moment exhibits the lowest statistical uraiaty as compared to the 1st moment (mean) and
higher-order ones, as illustrated in [8] througtaatious sensitivity analysis of an fGn procesgtier
marginal (1st) scale, as investigated in [6,9] tigfo the sample distribution and confidence intexval
of the climacogram vs. scale (metrics that obvipask related to high-order climacograms), and as
employed in a grid-turbulence application in [8].

An important characteristic of the fGn model is théuced large statistical bias, i.e. the deviation
of a statistical characteristic (e.g. variancenfrits theoretical discretized value [1]. Most saglin
literature perform stochastic modelling by equatihg sampling second-order dependence structure
with the expected value of a stochastic model. Hanethis is justified only when many realizations
(i.e. many time series) of a single process arélabla and thus, the mean of realizations can be
validly estimated for each scale. In case wheréngles realization (i.e. a single time series of a
physical process) is available the mode dependsinaeture of the desired stochastic model should
be modeled instead of its expectation. In thisstuee show an innovative way (based on the Monte-
Carlo technique) of handling the statistical bias &n fGn process when solely one time series is
known. This method can be applied to other distiiims and dependence structures (see in [8] for
such an example in daily precipitation).

2 Methodology

The fGn process is defined as follows:

L(k) _ﬂ) K 2 H)L _ﬂ) @)

where x is the process (underlined quantities den@ndom variables), k is the scale,
k

g(k) =] g(t)dt is the time-averaged process at scale k, H is tirsthbarameteyy is the mean value of
0

the process and subscript d denotes equality trildision, and i and j are subscripts.
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The (second-order) climacogram is defined as fatow
pk) = Varlx® |/ k2 2)

It can be proven that in the case of a Gaussiatewluise process (i.el = 0.5) the climacogram
follows the chi-square distribution, whereas thedtiparameter increases so does the skewness of the
distribution and the climacogram is close to the-parameter gamma distribution (which is a
generalization of the chi-square distribution).

In the next section, we perform thorough Monte-Gastperiments by generating fGn time series
and we estimate the climacogram for a wide rangkElwfkt parameters, sample lengths and scales.
For the generating algorithm we use the symmetriving average (SMA) scheme [10] that is
defined as follows:

X; :ig a;Vi+j )

wherel is the number of correlations we wish to preséngially equals the process lengti)is
a N(0,1) white noise process and the coefficientsan be calculated analytically for an fGn process
by [10]:
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wherey(1) is the process variance ang) the gamma function.

3 Monte-Carlo analysis

Here, we present the results from the Monte-Caxjpeements over the fGn model for a wide
range of Hurst parameters. In particular, we predhcough the SMA model an adequate number (N)
of synthetic timeseries required for the sample nmeaue to reach the expected one at scale k =
10%n [6], with a fixed standardized error of 1%.this way, the mode is also preserved with an even
smaller error since the mode value is more probblEccur than the mean one (raising a dispute on
using the expression “expected” for the mean ratiien the most expected value which is the mode
by mathematical definition). From preliminary argt/ we find that N is around 107/n2-H. The
expectation of the climacogram estimator for thd 2entral moment with an unknown mean is given

by [3]:

ELK) = (/09 - () fL-k /) (5)

Note that the sample mode cannot be estimated raligaby as in the case of other metrics such
as the mean, variance etc. The sample mode caadilg estimated from data if a fixed number of
accuracy (in terms of decimal places) is set. Urties concept, we here choose three digits of
accuracy and we estimate the most probable vatue fne timeseries after rounded up each value of
the timeseries to their third decimal place. Thaga mode valueM) for the first scale as well as its
difference to the expected one can be seen inlFAgd 2, respectively.
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Figure 1. Sample mode valué/) from the Monte-Carlo experiments vs. the lendthrofGn process
for a range of Hurst parameters.
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Figure 2: Sample mode values and expected ones as estimatethe Monte-Carlo experiments for
a range of Hurst parameters.

A general conclusion from the Monte-Carlo analysithat the gamma distribution adequately fits the
climacogram distribution for all the examined sa@s but with different distribution parameters,
and that the mode climacogram is very close testimple Q25 value for all cases (for such examples
see in Fig. 3 and 4, respectively).
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Figure 3: Theoretical gamma probability density distribuatimnction and modelled (from the Monte-
Carlo analysis) for the case ldf= 0.6 anch = 200 (scald = 1).
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Figure 4: Theoretical and modelled (from the Monte-Carlalgsis) climacograms (mean, median,
mode, max, min, Q25 and Q75) fdr= 0.6 [up] andH = 0.9 [down], both fon = 500.
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4 Application

In this section, we apply a stochastic analysitofahg the methodology presented in [11] at a
fraction of the Penios river located at ThessalyG@reece and extending from the Ali Efenti
(upstream) to Amygdalia (downstream) gauging stafi®]. Particularly, we conduct a Monte-Carlo
analysis of 1000 synthetic annual-discharge timesaf lengtm = 200, following an fGn processi(
= 0.8, = 750 cmsg = 100 cms), and for the flood inundation of thegmted discharges we use the
quasi-2d LISFLOOD-FP model [13] in an unsteady-flegime so as to take into account the effect
of the past floods inundation. From the 1000 sam@eestimate the mode climacogram and we fit a
theoretical f{Gn process assumed that it coincid¢be expected climacogram of the new modtely
estimated approximately 0.7), we then generate Ha@fples for the new model, and we estimate
both flood inundation maps for the original and tiew models (Fig. 6). We find that the flood
inundation corresponding to the new model underedés the uncertainty of the discharge process
and, as a consequence, that of the flood inundagidact that could have a non-negligible effect to
the effective damage cost caused by floods. Afgbgeiuncertainty is underestimated a regular etust
of annual floods could be erroneously regardedrasra extreme cluster.
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Figure5: [up] Sample timeseries from the mode and expettedels; [down] climacograms
(adjusted for bias) for the mode (assumed as eagectiue for the new model) and expected
(original) model.
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Figure 6: Mean flood inundation map as derived from the en@dhrk) and expected (light) Monte-
Carlo analyses.

5 Conclusions and discussion

In this study, we present an innovative recipe Handling the statistical bias in case where a
single time series of an fGn process is availableidh is the usual case). We conduct exhaustive
Monte-Carlo experiments and we estimate severéikttal characteristics (such as the mode and
mean) of the dependence structure through the r{deaaler) climacogram. We observe that the two-
parameter gamma distribution can adequately apmtei the distribution of the climacogram, and
that the mode climacogram is close to the Q25 valilwerefore, in case where we have a single
realization (i.e. a single time series) we shoulndel the mode dependence structure of the desired
stochastic model rather than its expectation. Binale apply our analysis for the construction of a
probabilistic flood inundation map in a fractiontbe Peinios river in Greece, and we observe that i
bias is not treated properly the uncertainty of tligcharge process and the flood inundation are
underestimated.
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