
Effectively Monadic Predicates

Margus Veanes1, Nikolaj Bjørner1, Lev Nachmanson1, and Sergey Bereg2

1 Microsoft Research
{margus,nbjorner,levnach}@microsoft.com

2 The University of Texas at Dallas
besp@utdallas.edu

Abstract

Monadic predicates play a prominent role in many decidable cases, including decision procedures

for symbolic automata. We are here interested in discovering whether a formula can be rewritten into

a Boolean combination of monadic predicates. Our setting is quantifier-free formulas over a decidable

background theory, such as arithmetic and we here develop a semi-decision procedure for extracting a

monadic decomposition of a formula when it exists.

1 Introduction

We ran into the following decision problem that we named monadic decomposition:

“Given an effective representation of a binary relation R ⊆ A × B, decide if R is
a finite union

⋃
0≤i<k Ri of some nonempty Cartesian products Ri = Ai × Bi, and

k > 0, and if so, construct such Ri effectively. Call k the width of the decomposition.”

At first glance this seemed to be a standard problem one might look up in some classical
literature on recursion theory because we work in a fixed background structure U with an re
(recursively enumerable) universe U .1 However, the exact circumstances are somewhat unusual.
We assume an re set Ψ of (open) formulas such that:

1. If a ∈ U and x is a variable then x
.
= a, a

.
= x ∈ Ψ,2 and if ψ ∈ Ψ then ψ[x/a] ∈ Ψ.

2. If ψ, ϕ ∈ Ψ then ψ ∧ ϕ, ψ ∨ ϕ,¬ϕ ∈ Ψ.

3. Ψ is decidable: given ψ(x̄) ∈ Ψ, we can decide if ψ(x̄) is satisfiable, i.e., if U |= ∃x̄ψ(x̄).

When ψ(x̄) is satisfiable it follows that we can also effectively generate a witness ā such that
ψ(ā) holds, because U is re. What makes this setup unusual from a classical standpoint is
the last item. Essentially, we assume an unlimited supply of “uninterpreted constants” (the
free variables) and that we can decide satisfiability and construct satisfiable interpretations for
those constants.3

From the standpoint of program analysis with state-of-the-art satisfiability modulo theories
(SMT) solvers the above setup illustrates a basic use of any SMT solver that supports model
generation [3]. Next, we illustrate the concrete program analysis context that caused us to
investigate monadic decomposition.

For security analysis of string sanitizers [4, 8], it is often useful to express string constraints
by using symbolic finite automata [7] or SFAs. In an SFA, labels on transitions are predicates

over a character theory rather than concrete characters.
SFAs can for example express valid sequences of inputs (e.g., inputs to a decoder that do

not cause exceptions) as well as potential sets of attack vectors (e.g., outputs that may cause

1Thus all a ∈ U can be named effectively; to avoid clutter, we write a also for a term denoting a.
2The symbol

.

= is used as the formal equality symbol.
3Such interpretations are essentially expansions of U, using standard terminology of model theory.

K. Mcmillan, A. Middeldorp, G. Sutcliffe, A. Voronkov (eds.), LPAR-19 (EPiC Series, vol. 26), pp. 97–7 1

Effectively Monadic Predicates Veanes et al.

a security vulnerability). In the first case a symbolic automaton can be obtained by extracting
the domain automaton of the decoder. Suppose that a single character is a sequence of one up
to four bytes (say byte1..4). The particular decoder we have in mind here is a UTF8 decoder. A
symbolic automaton extracted from a UTF8 decoder may have the following (seemingly trivial)
structure:

q q ϕ1, ϕ2, ϕ3, ϕ4

There is a single state q and four loops each with label ϕn. Suppose that ϕn(x) holds
iff |x| = n and fn(x[0], . . . , x[n − 1]) computes a Unicode code point from the n bytes (i.e.,
fn does not reject them), e.g., f2(C516, 9216) = 15216 but f2(FF16, FF16) throws an exception.
The condition ϕn involves fairly nontrivial arithmetic operations and is extracted from path
conditions and output expressions of the decoder for the case that handles n input bytes (the
value n is determined by the first byte).

For example, the sequence [[4F16], [C516, 9216], [4516]] is accepted by the above SFA and
stands for the UTF8 encoding of the string “OŒE”.

For further analysis, the above SFA is not very useful. The character boundaries imposed
by the above SFA are in some sense “fake”. For most purposes, e.g., to decide if the decoder
admits over-encodings, one would like to intersect it with other property SFAs, expressed for
example by regexes (regular expressions over Unicode characters), and to check emptiness of
the resulting automata. In order to do so, the alphabet type must be reduced from byte1..4 to
byte. The predicate ϕ1 is already in the right form, it is 0 ≤ x ≤ 7F16.

One approach to do this is to compute monadic decompositions (generalized for n > 2) of
each ψn(x0, . . . , xn−1) = ϕn([x0, . . . , xn−1]) (for n > 1) and to expand the SFA. Take the case
of n = 2. It turns out that ψ2(x, y) is equivalent to C216 ≤ x ≤ DF16 ∧ 8016 ≤ y ≤ BF16.

Therefore, the transition q
ϕ2

→ q above can be replaced by two transitions:

q q p
C2-DF

80-BF

The predicates ψ3 and ψ4 can be decomposed similarly (their monadic decompositions have
higher widths). It is interesting to observe that after the decomposition of all the predicates
and after further minimization we obtain the following SFA, provided the decoder is correct:

q0 q0
q1

q4

q5

q7

q6

q2

q3F1-F3

F0

F4

E1-EC|EE|EF

E0

ED

C2-DF

80-BF

90-BF

80-8F

80-BF

A0-BF

80-9F

80-BF

0-7F

This SFA corresponds to the following regex

^([\x00-\x7F]|[\xC2-\xDF][\x80-\xBF]

|(\xE0[\xA0-\xBF]|\xED[\x80-\x9F]|[\xE1-\xEC\xEE\xEF][\x80-\xBF])[\x80-\xBF]

|(\xF0[\x90-\xBF]|[\xF1-\xF3][\x80-\xBF]|\xF4[\x80-\x8F])[\x80-\xBF]{2})*$

2

Effectively Monadic Predicates Veanes et al.

that describes all valid UTF8 encoded strings. Any string that is not accepted by this regex is
either malformed or possibly over-encoded. Some UTF8 decoders do allow over-encoded strings
in order to be more robust by avoiding exceptions as much as possible, but it is not always safe
to do so, because over-encoding may expose security vulnerabilities [6, 5].

The above usage scenario is but a sample out of a large range of possible analysis tasks of
string routines where monadic decomposition plays an important role. It was proved recently
that certain analysis problems over ESFTs (extended symbolic finite transducers, introduced
in [2]), remain decidable only when the ESFT is Cartesian [1]. The current paper implies that
the main result in [1] also holds for monadic ESFTs, because, by using the decision procedure
presented here, we can effectively reduce monadic ESFTs to equivalent Cartesian ESFTs.

Although we have only illustrated the application for one specific case, we believe that there
are several other areas where monadic decomposition can be useful. In particular, because the
technique is completely generic, no theory-specific assumptions are made about U.

In the following we describe the problem formally and prove some basic results.

2 Monadic predicates

Let R be an n-ary relation for some n ≥ 2. R is Cartesian if there exist unary relations Ui, for
i < n, such that R is the direct product (n-way Cartesian product)

∏
i<n Ui. R is monadic if

there exists k > 0 and Cartesian Ri, for i < k, such R =
⋃

iRi; {Ri}i<k is called a monadic

decomposition of R of width k. R is k-monadic if R has a monadic decomposition of width k.
Note that 1-monadic is the same as Cartesian. We lift the notions to predicates, i.e., effective
representations of relations, a predicate ϕ is k-monadic if there exist k Cartesian predicates ϕi

such that ϕ is equivalent to
∨

i<k ϕi.
We assume a decidable background U as described above. The Boolean type is bool with

truth values {T, F}. In our expressions, all variables are typed and all terms and formulas are
welltyped. We use λ-expressions to define anonymous functions and predicates. The type of
the elements is implicit and determined by the context. We write [[ϕ]] for the relation defined
by a predicate ϕ.

Example 1. Let ϕ be the predicate λ(x, y).(x + (y mod 2)) > 5, where x and y have integer

type. Then R = [[ϕ]] is the corresponding binary relation over integers. R is not Cartesian but

it is 2-monadic because R = ([[λx.x > 5]]× [[λy.T]])∪ ([[λx.x > 4]]× [[λy.odd(y)]]). ϕ is satisfiable,

for example (5, 3) ∈ [[ϕ]]. ⊠ ⊠

We assume that tuples are part of the background, i.e., if we have types σi for some i,
0 ≤ i < k, and some k ≥ 1 then we also have direct product types

∏k−1
i=0 σi. This does not

violate the third assumption on Ψ, we can always treat a variable x : σ1 × σ2 as two variables
x1 : σ1 and x2 : σ2. The only operations on a tuple are constructing it and projecting its
elements, tuples can always be eliminated by introducing more variables.

The arity of R and what constitutes a monadic decomposition of R clearly depends on the
argument types, this information is implicitly assumed. For example, we may have a ternary
relation R over

∏3
i=1 Z and effectively transform it into a binary relation over (Z× Z) × Z.

3 Monadic decomposition

We are interested in the following two problems.

1. Deciding if a predicate ϕ is monadic.

3

Effectively Monadic Predicates Veanes et al.

2. Given a monadic predicate ϕ, effectively constructing a monadic decomposition of ϕ.

We restrict our attention to binary predicates (without loss of generality).
Once we have solved 1 and 2 for binary predicates, generalization to n-ary predicates, where

n > 2, is relatively straightforward: Suppose λ(x, y, z).ϕ(x, y, z) is given, where x, y and z have
types A, B and C, respectively. First, decide if ψ = λ(w, z).ϕ(first(w), second(w), z) is monadic
where the type of w is A×B. If ψ is not monadic then neither is ϕ. Suppose ψ is 2-monadic with
a monadic decomposition λ(w, z).(ψ11(w) ∧ ψ12(z)) ∨ ((ψ21(w) ∧ ψ22(z)). Second, decide if the
binary predicates λ(x, y).ψ11(〈x, y〉) and λ(x, y).ψ21(〈x, y〉) are monadic. If at least one of them
is not monadic then neither is ϕ. If both are monadic, then use their monadic decompositions
in place of ψ11 and ψ21, and use standard distributive laws of the Boolean connectives to derive
a monadic decomposition of ϕ.

3.1 Deciding if a predicate is monadic

We conjecture that this problem is undecidable in general.
Consider any term f(x) in the background theory denoting a function over integers. Let

ϕf (x, y) be the formula f(x)
.
= y. Then ϕf (x, y) is monadic iff there exists k such that ϕf (x, y)

is equivalent to
∨

i<k αi(x) ∧ βi(y). Since there can only be one y for a given x (because f is
a function) it follows that |[[βi]]| = 1 for all i < k. So ϕf is monadic iff f is bounded (finite-
valued). Deciding if f is bounded is an undecidable problem in general. However, we have not
investigated the necessary conditions on the background that would cause undecidability of this
problem.

3.2 Decomposition procedure

In the following we provide a brute force semidecision procedure for monadic decomposition.
While the procedure is complete for monadic predicates, in the nonmonadic case it will not
terminate. The input is a binary predicate ϕ ∈ Ψ. Let R = [[ϕ]] ⊆ A × B, where we assume
that A stands for {a | ∃bR(a, b)} and B stands for {b | ∃aR(a, b)}. Define the relations:

x ∼ x′
def

= ∀y y′((ϕ(x, y) ∧ ϕ(x′, y′)) ⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

y ∽ y′
def

= ∀xx′((ϕ(x, y) ∧ ϕ(x′, y′)) ⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

For a ∈ A, define the Y-cut of R by a as the set Ya = {b | R(a, b)}. Similarly, for b ∈ B, define
the X-cut of R by b as the set Xb = {a | R(a, b)}. The following properties are used below.

Lemma 1. Let R and A be given as above.

1. It holds for all a, a′ ∈ A that a ∼ a′ ⇔ Ya = Ya′ .

2. The relation ∼ is an equivalence relation over A.

Proof. Proof of 1 : Let a, a′ ∈ A.

⇒: Assume a ∼ a′. We show that Ya ⊆ Ya′ . Let (a, b) ∈ R. We need to show that (a′, b) ∈ R.
There is some b′ such that (a′, b′) ∈ R. So, by definition of ∼, (a′, b), (a, b′) ∈ R.

⇐: Assume Ya = Ya′ . Let (a, b), (a′, b′) ∈ R, i.e., b ∈ Ya and b′ ∈ Ya′ . So, by Ya = Ya′ , we
have b ∈ Ya′ and b′ ∈ Ya. It follows that (a, b

′), (a′, b) ∈ R.

Proof of 2 : Immediate by using 1.

Lemma 2. R is monadic ⇔ the number of ∼-equivalence classes is finite.

4

Effectively Monadic Predicates Veanes et al.

Proof. ⇒: Assume R has a monadic decomposition {Ai × Bi}i<n. Let Ãi =
⋃

a∈Ai
[a]∼. We

show first that {Ãi×Bi}i<n is also a monadic decomposition of R. Suppose (a, b) ∈ Ãi×Bi. So
there is ai ∈ Ai such that a ∼ ai. Since (ai, b) ∈ Ai ×Bi it follows that (ai, b) ∈ R, so b ∈ Yai

.
But Yai

= Ya because ai ∼ a, so b ∈ Ya, i.e., (a, b) ∈ R. The direction R ⊆
⋃

i<n Ãi × Bi is

immediate because R ⊆
⋃

i<nAi ×Bi and Ai ⊆ Ãi.

For all I ⊆ {i | 0 ≤ i < n} let MI be the minterm (
⋂

i∈I Ãi) \ (
⋃

j /∈I Ãj). By using standard

Boolean laws, each Ãi is a finite union of disjoint nonempty minterms. We can apply the
following equivalence preserving transformations to the monadic decomposition {Ãi × Bi}i<n

until no more transformations can be made:

• replace (MI ∪MJ)×Bi by (MI ×Bi) ∪ (MJ ×Bi),

• replace (MI ×Bi) ∪ (MI ×Bj) by MI × (Bi ∪Bj).

Let the resulting decomposition be {A′
i × B′

i}i<m, where, for all a ∈ A and b ∈ B, we have
(a, b) ∈ R iff there exists exactly one i such that (a, b) ∈ A′

i ×B′
i. In other words, for all a ∈ A,

Ya is the set B′
i such that a ∈ A′

i. It follows that a ∼ a′ for all a, a′ ∈ A′
i.

Thus the number of ∼-equivalence classes is bounded by 2n−1, that is the maximum number
m of minterms, where n is the smallest width of a monadic decomposition of R.

⇐: Assume that the number of ∼-equivalence classes is finite. Let A =
⋃n−1

i=0 Ai where
Ai = [ai]∼. Let Bi = Yai

for 0 ≤ i < n. Thus if (a, b) ∈ Ai × Bi then a ∼ ai and b ∈ Yai
, i.e.,

Ya = Yai
and b ∈ Yai

. So b ∈ Ya, i.e., (a, b) ∈ R. Conversely, if (a, b) ∈ R then b ∈ Ya. But
Ya = Yai

= Bi, for some i < n, where a ∈ Ai and b ∈ Bi. It follows that {Ai × Bi}i<n is a
monadic decomposition of R.

We use the negated form of ∼:

x ≁ x′ ⇔ ∃y y′(ϕ(x, y) ∧ ϕ(x′, y′) ∧ (¬ϕ(x′, y) ∨ ¬ϕ(x, y′)))

So, for all a, a′ ∈ A, a ≁ a′ means that a and a′ must participate in distinct Cartesian compo-
nents of a monadic decomposition of ϕ, i.e., if {Ri}i<k is a monadic decomposition of R, then
there exist b, b′ ∈ B and i 6= j such that (a, b) ∈ Ri \Rj and (a′, b′) ∈ Rj \Ri.

Let (a0, b0) ∈ [[ϕ]] and let WA = {a0}. Iterate the following procedure.

1. Let ψ(x) =
∧

a∈WA
x ≁ a

2. If ψ is satisfiable and ψ(a) holds then update WA :=WA ∪ {a} else terminate.

Observe that satisfiability checking of ψ as well as generating the witness a is decidable
becuse we can transform ψ to prenex normal form as an ∃-formula and treat all the existential
variables as free variables, i.e., the resulting formula is in Ψ. When ψ becomes unsatisfiable
then any further element from A must be ∼-equivalent to one of the elmenets already in WA,
while all elements in WA belong to distinct ∼-equivalence classes. Therefore, if ϕ is monadic
then the process terminates by Lemma 2, and upon termination WA is a finite collection of
witnesses that divides A into a set A∼ of ∼-equivalence classes [a]∼ for a ∈ WA. For example,
if ϕ is Cartesian then ψ is unsatisfiable initially, because then A∼ = {[a0]∼}.

Lemma 3. If R is monadic then, for all a ∈ A∼ and b ∈ B
∽
, we can effectively construct

αa, βb ∈ Ψ such that [[αa]] = a and [[βb]] = b.

5

Effectively Monadic Predicates Veanes et al.

Proof. By using Lemma 2 let WA be constructed as above, so A∼ = {[a]∼ | a ∈WA}. Similarly
to WA, construct a finite set WB such that B

∽
= {[b]

∽
| b ∈WB}. Let

(for b ∈WB) β[b]∽(y)
def

= (
∧

a∈WA∩Xb

ϕ(a, y)) ∧ ¬(
∨

a∈WA\Xb

ϕ(a, y))

(for a ∈ WA) α[a]∼(x)
def

= (
∧

b∈WB∩Ya

ϕ(x, b)) ∧ ¬(
∨

b∈WB\Ya

ϕ(x, b))

Observe that α[a]∼ is well-defined because for all a′ ∈ [a]∼ we have that Ya = Ya′ . Similarly for
β[b]∽ . One can show that [[β[b]∽]] = [b]

∽
and [[α[a]∼]] = [a]∼ by using standard laws of logic.

Lemma 3 is essentially a quantifier elimination result that allows us to elimiate the ∀ quan-
tifier from the definition of λx.x ∼ a (resp. λy.y ∽ b) by stating that it is enough to consider
the elements in WB (resp. WA). We can now prove the following result that also gives us a
brute force method for monadic decomposition.

Theorem 1. If ϕ(x, y) is monadic then

1. ϕ(x, y) is equivalent to λ(x, y).
∨

a∈WA
(α[a]∼(x) ∧ ϕ(a, y)).

2. ϕ(x, y) is equivalent to λ(x, y).
∨

b∈WB
(β[b]∽(y) ∧ ϕ(x, b)).

3. ϕ(x, y) is equivalent to λ(x, y).
∨

a∈WA,b∈WB ,(a,b)∈[[ϕ]](α[a]∼(x) ∧ β[b]∽(y)).

Proof. We prove 1. The other cases are similar. By Lemma 3 we have [[α[a]∼]] = [a]∼. By
construction of WA we have that, for all a ∈ WA we have [a]∼ × Ya ⊆ [[ϕ]] where [a]∼ × Ya =
[[λ(x, y).α[a]∼ (x) ∧ ϕ(a, y)]]. In the other direction, if (a, b) ∈ [[ϕ]] then a ∈ [[α[a]∼]] and b ∈ Ya.
In other words, (a, b) ∈ [[λ(x, y).α[a]∼(x) ∧ ϕ(a, y)]].

We write αa for α[a]∼ and βb for β[b]∽ .

Example 2. Let φ(x, y) := (0 ≤ x ≤ 1∧ 0 ≤ y ≤ 1∧x+ y < 2). The example illustrates a case

where φ is satisfied by a finite model of the form:

a1 b1

a2 b2

We get the following predicates

αa1
(x) := x

.
= a1

αa2
(x) := x

.
= a2

βb1(y) := y
.
= b1

βb2(y) := y
.
= b2

where a1 = 0, a2 = 1, b1 = 0, b2 = 1. The monadic decomposition of φ reconstructs the formula

as

αa1
(x) ∧ βb1(y) ∨ αa1

(x) ∧ βb2(y) ∨ αa2
(x) ∧ βb1(y) .

Note that αa2
(x) ∧ βb2(y) is not included because φ(1, 1) is false. ⊠

6

Effectively Monadic Predicates Veanes et al.

3.3 Deciding if a predicate is monadic in integer linear arithmetic

Consider integer linear arithmetic. It clearly meets the requirements of U. Take a linear
arithmetic formula ϕ(x, y). Let the predicate ∼ be defined as above, let ‘x ∈ A’ stand for the
formula ∃yϕ(x, y). Construct the following formula in Presburger arithmetic,

IsMonadic(ϕ)
def

= ∃x̂(∀x(x ∈ A⇒ ∃x′(|x′| < x̂ ∧ x ∼ x′)))

Theorem 2. Monadic decomposition is decidable for integer linear arithmetic.

Proof. Let ϕ(x, y) be a formula in integer linear arithmetic.
We show that ϕ is monadic ⇔ IsMonadic(ϕ) is true in Presburger arithmetic.
Proof of ⇒: Assume ϕ is monadic. Then A∼ is finite by Lemma 2. Let

â = max{min(abs(C)) | C ∈ A∼}+ 1.

Then, for all a ∈ A, a belongs to some C in A∼, and so there is a′ ∈ C such that |a′| =
min(abs(C)) and so |a′| < â and a ∼ a′.

Proof of ⇐: Assume IsMonadic(ϕ) holds. Choose a witness â for x̂ and consider the classes
A = {[a]∼ | 0 ≤ |a| < â}. It follows that A = A∼ is finite, so ϕ is monadic by Lemma 2.

4 Conclusion

We introduced the problem of monadic decomposition of predicates in decidable theories. The
problem has several useful applications in program analysis. We are currently investigating
more efficient algorithms for implementing monadic decomposition, other than the brute force
approach that we presented. Deciding if a predicate is monadic in specific background theories
besides integer linear arithmetic, is another interesting open problem.

References

[1] L. D’Antoni and M. Veanes. Equivalence of extended symbolic finite transducers. In N. Sharygina
and H. Veith, editors, CAV 2013, volume 8044 of LNCS, pages 624–639. Springer, 2013.

[2] L. D’Antoni and M. Veanes. Static analysis of string encoders and decoders. In R. Giacobazzi,
J. Berdine, and I. Mastroeni, editors, VMCAI 2013, volume 7737 of LNCS, pages 209–228. Springer,
2013.

[3] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and applications. Com-

mun. ACM, 54(9):69–77, 2011.

[4] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and precise sanitizer analysis
with Bek. In Proceedings of the USENIX Security Symposium, August 2011.

[5] NVD. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-2938.

[6] SANS. Malware faq. http://www.sans.org/security-resources/malwarefaq/wnt-unicode.php.

[7] M. Veanes. Applications of symbolic finite automata. In S. Konstantinidis, editor, CIAA 2013,
volume 7982 of LNCS, pages 16–23. Springer, 2013. Invited talk.

[8] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Symbolic finite state transducers:
Algorithms and applications. In POPL’12, pages 137–150, 2012.

7

	Introduction
	Monadic predicates
	Monadic decomposition
	Deciding if a predicate is monadic
	Decomposition procedure
	Deciding if a predicate is monadic in integer linear arithmetic

	Conclusion

