
EasyChair Preprint
№ 4382

Handling Soft Errors in Krylov Subspace Methods
by Exploiting Their Numerical Properties

Muhammed Emin Ozturk, Gagan Agrawal, Yukun Li and
Ching-Shan Chou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 12, 2020

Handling Soft Errors in Krylov Subspace Methods by Exploiting
Their Numerical Properties

Muhammed Emin Ozturk
University of Utah

Gagan Agrawal
Augusta University

Yukun Li
University of Central Florida

Ching-Shan Chou
Ohio State University

Abstract— Krylov space methods are a popular means
for solving sparse systems. In this paper, we consider three
such methods: GMRES, Conjugate Gradient (CG) and
Conjugate Residual (CR). We focus on the problem of
efficiently and accurately detecting soft errors leading to
silent data corruption (SDC) for each of these methods.
Unlike limited amount of previous work in this area, our
work is driven by analysis of mathematical properties of
the methods. We identify a term we refer to as energy
norm, which is decreasing for our target class of methods.
We also show other applications of error norm and residual
value, and expand the set of algorithms to which they
can be applied. We have extensively evaluated our method
considering three distinct dimensions: accuracy, magnitude
of undetected errors, and runtime overhead. First, we show
that our methods have high detection accuracy rate. We
gain over 90% detection rate for GMRES in most of the
scenario and matrices. For most case in CG and CR, we
gain over 70% detection rate as well. Second, we show that
for soft errors that are not detected by our methods, the
resulting inaccuracy in the final results are small. Finally,
we also show that the run-time overheads of our method
are low.

Keywords – Fault-tolerance, Soft errors, Iterative
Solvers, Krylov Subspace, GMRES, Conjugate Gra-
dients, Conjugate Residual

I. INTRODUCTION

As we are approaching the Exascale era, there is a
growing emphasis on resilience. One of the reasons is
that with increasing number of nodes (or cores), the
likelihood of a failure increases. Together with factors
like the use of smaller feature-size [23], we are seeing
greater likelihood of soft errors, which involve bit flips
leading to silent data corruption (SDC).

There has been considerable recent interest in both
detecting soft errors at the software level, and making
software resilient against such errors [19], [16], [12].
However, most of the techniques presented in the lit-
erature to date do not consider the specific numerical
properties of the underlying methods. For example,
redundancy has been used as a promising solution [8],
[17] where one duplicates the execution and crosschecks
that state across different instances. Clearly, such an
approach is expensive in terms of the resources required.

In this paper, we focus on a class of numerical
methods referred to as Krylov subspace methods. These

methods are designed to solve large sparse matrix eigen-
value problems or a large linear system of equations,
both of which are among the most important problems
in scientific computing. Krylov subspace methods play a
crucial role in how we can handle large, sparse, and non-
symmetric matrix problems. Examples of such methods
include Conjugate Gradient (CG), Conjugate Residual
(CR), and Generalized Minimum Residual (GMRES).
So far, there has only been a limited amount of work on
addressing the problem of soft error detection for these
methods [2], [11], [2], [11]. Most of these solutions have
been heuristic in nature, and do not build on top of the
analysis of numerical properties of these methods. For
example, multiple efforts have used analysis of residual
values across iterations as an indicator of soft errors [2],
[11] in the case of CG. However, the value of residual
is not strictly monotonically decreasing for CG, and this
results in an indicator of limited accuracy. In the case
of GMRES, Bridges et al. [20] developed FT-GMRES
(Fault Tolerant GMRES), which involves a different
algorithm, and thus the approach is hard to apply to
an existing code.

This paper revisits existing literature on the analysis
of these methods [25], [4], [24] and identifies properties
that lead to efficient and accuracy detectors of soft
errors. Particularly, we identify a term we refer to as
energy norm, which is monotonically decreasing for our
target class of methods. We also show other applications
of error norm and residual value, and expand the set
of algorithms to which they can be applied. We add
additional heuristics to these methods to develop an
overall methodology.

We have extensively evaluated our proposed methods
using several real matrices. Our evaluation shows high
detection accuracy (especially for GMRES and CG).
Moreover, we find that average error due to undetected
errors is small, indicating that most significant errors get
detected. Finally, we see low overheads of applying our
method.

II. RELATED WORK

There have been certain efforts on the detection of
soft errors in iterative methods for linear systems, as
we will describe in this section. However, to the best of
our knowledge, detectors covering the space of Krylov

subspace solvers that exploit their numerical properties
have not been developed.

Bronevetsky et al. proposed that the residual that is
normally used to check convergence can be used as a
soft error detector by observing abnormal value changes
across iterations [2]. They performed experiments with
several iterative solvers, including CG, which is one of
the well known Krylov Subspace Methods. However,
they did not apply this approach on GMRES or CR.
Moreover, the Residual method applied on CG is just
a heuristic, because the residual value is not strictly
monotonically decreasing in CG. Similarly, in Liu et
al. [11], the impact of soft errors was evaluated on five
applications, including CG. Recently, Ozturk et al. [18]
developed a function that has monotonic decreasing
property and thus is able to detect soft errors in CG.

Sao et al. [22] developed a methodology for iterative
solvers such as steepest descent (SD) and conjugate gra-
dient (CG) to make them fault tolerant. They designed
self-stabilizing versions of these methods, which are
resilient to soft errors. However, their approach requires
rewriting an application with a different algorithm, and is
not applicable towards making an existing code resilient.
There has been limited work proposed regarding for fault
tolerance related work in GMRES. Bridges et al. [20]
proposed FT-GMRES (Fault Tolerant GMRES) – how-
ever, the approach also requires rewriting an application
with different algorithm to make it resilient towards
soft errors. Recently, Pachajoa et al. [19] proposed a
node failure-tolerant preconditioned conjugate gradient
method that is capable of recovering from node failures
without additional spare nodes.

Another series of efforts apply machine learning ap-
proach in soft error detection. Liu et al. combine on-
line detection with off-line training [14]. Their proposed
method uses machine learning and is effective when the
residual (or another term) is not known to be monotoni-
cally decreasing under normal execution. However, there
is a substantial overhead of off-line training.

III. BACKGROUND

Large sparse matrix eigenvalue problems or large
linear system of equations are a critical part of scientific
computing and practice of science and engineering.
Krylov subspace methods are regarded as one of the
ten most important classes of numerical methods for
solving large sparse matrix problems [6], as they play a
crucial role in how we can handle large, sparse, and non-
symmetric matrix problems. This section provides an
overview of the Krylov subspace and Krylov subspace
methods.

A. Krylov Subspace and Krylov Subspace Methods
Given an n × n matrix A, and a vector of length n

(b), Krylov subspace is is the subspace spanned by the
vectors of the Krylov sequence:

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b}

The meaning of span here is that every vector in
Km can be defined by the linear combination of the
basis {b, Ab, A2b, . . . , Am−1b} [10]. A Krylov subspace
method for solving a linear system Ax = b, or a Krylov
space solver is an iterative method that starts with an
initial approximation x0 and a residual r0 calculated as
r0 = b − Ax0. At the m-th step, an approximation the
solution of Ax = b, i.e, xm, is found in x0 + Km. Till
reaching a possible exact solution, it iterates xn such
that

xn − x0 = qn−1(A)r0 ∈ Kn+1(A, r0)
where qn−1 is a polynomial of degree at most n−1[10].

To solve a linear system, well-known simple iterative
methods such as Jacobi or Gauss elimination might be
considered. However, those methods are not efficient
when we solve large and highly sparse matrices since
they have O(n3) time complexity. Moreover, Krylov
subspace methods are also applicable when those ma-
trices are indefinite and asymmetrical. The well-known
Krylov subspace methods are Arnoldi, Conjugate Resid-
ual (CR), Conjugate Gradient(CG), Generalized Min-
imum Residual (GMRES), Biconjugate Gradient (Bi-
CG), Quasi Minimal Residual (QMR), and Minimal
Residual (MINRES). We focus on CR, CG and GMRES
in this paper.

When deciding which Krylov subspace solver to use,
we need to consider properties of matrix. If the matrix is
Symmetric Positive Definite (SPD), Conjugate Gradient
is considered as best candidate for solving large linear
systems in terms of workload. However, if the matrix is
not symmetric then GMRES should be first choice due to
its effectiveness. Fig.1 represents the tree for conditions
in which Krylov Subspace methods that we can apply.

Fig. 1: Decision tree for Choosing Krylov Subspace
methods

B. Generalized Mininal Residual (GMRES)
The Generalized Minimal Residual method has been

proposed by Saad and Schults [26]. GMRES can be
applied to an unsymmetrical system and it proceeds
by creating a sequence of orthogonal vectors. GMRES
is the most robust method among Krylov Subspace
methods although it is expensive in terms of the number
of operations. There are many ways to implement the
GMRES Algorithm. In the paper, we use a variation
of the GMRES Algorithm (Algorithm 1) that utilizes

the Modified Gram-Schmidt orthogonalization in the
Arnoldi process [25].

In Algorithm 1, the prim vector of Krylov Subspace
is initialized (line 1-3) and the next vector to span
Krylov Subspace is generated (line 6). Arnoldi method
is applied (line 7-17) – this is an iterative solver also
known as orthogonal projection method that is used for
building an orthogonal basis of the Krylov subspace
Km.

Algorithm 1 GMRES
1: Ax=b linear system and initial vector x0.
2: r0 = b− Ax0 /*Residual Vector*/
3: β = ||r0||2
4: k = 0
5: while not converged do
6: vj+1 = Aqj
7: /* Orthogonalize (Arnoldi Process) */
8: while i < j do
9: hi,j = qi ∗ vj+1

10: vj+1 = vj+1 − hi,jqi
11: end while
12: hj+1,j = ||vj+1||2
13: if hj+1,j == 0 then
14: Solution is xj−1

15: Return
16: end if
17: qj+1 = vj+1/hj+1,j

18: yj = argmin||H(1 : j + 1, 1 : j)y − βe1||2
19: k = k + 1
20: end while
21: return xk

C. Conjugate Gradient
Conjugate gradient (CG) solves linear system Ax = b

where A is symmetric positive definite (SPD). It was
initially proposed by Hestenes and Stiefel in 1952 [9].
CG calculates successive approximations xk = α1p1 +
α2p2+ . . .+αkpk to the solution vector. The algorithm
continues until the residual rk = b−Axk is sufficiently
small.

Algorithm 2 Conjugate Gradient
1: Choose initial vector x0.
2: r0 = b− Ax0

3: p0 = r0
4: k = 0
5: while not converged do

6: αk =
rTk rk

pT
k
Apk

7: xk+1 = xk + αkpk
8: rk+1 = rk − αkApk
9: βk =

rTk+1rk+1

rT
k
rk

10: pk+1 = rk+1 + βkpk
11: k = k + 1
12: end while
13: return xk

The pseudo-code given as Algorithm 2 starts out with
an initial approximation x0 (usually a zero vector). In
line 2, the residual r0 represents the direction of the
error in the initial result Ax0. The initial residual is also
used as the initial direction p0 in which to search for

a new solution (line 2). In each iteration, the algorithm
searches in the direction pk for a new solution vector xk
(line 10). The distance in which to move in the direction
pk is given by the term αk (line 6). The residual and
search direction vectors are then updated (lines 8-11).

D. Conjugate Residual
The conjugate residual method was also introduced

by Hestenes and Stiefel (1952) and Stiefel (1955), even
if they did not mention the method’s name in their first
paper [9]. CR is an iterative, polynomial-based algorithm
where xi minimizes error norm ‖ek‖2 = ‖f − Axi‖2
over the i-dimensional Krylov space [25].

Ki(A, r0) = span{b, Ar0, A2r0, . . . , A
i−1r0}

It can also be defined as different derivation of GM-
RES for specific case where A is a Hermitian matrix
[21]. CR is closely related to the CG method with
similar construction and convergence properties. Like
CG, it computes x at most over n steps. However, it
requires more storage and more numerical operations
than CG [21]. The required work per loop in CR is 6n
multiplication operations and one matrix-vector product
and required storage for the vectors is 5n [21]. The
other fundamental difference from Conjugate Gradient
is that CR can be used for matrices that are symmetric
but not necessarily positive definite [25]. Calculation of
α and β is only differences from the implementation of
Conjugate Gradient as it seen in Algorithm 5 (line 9-13).

IV. METHODOLOGY FOR DETECTING SILENT DATA
CORRUPTION

We now describe our proposed set of approaches,
which are all based on theoretical characteristics of
Krylov Subspace methods. It should be noted that we
focus only on detecting errors and not on recovering
from them. After the detection process is completed,
recovery can be done by using low-cost application-level
checkpoints as Liu et al. indicated in their work [13].
Similarly, our presentation and implementation assumes
execution on a single machine – the idea can be applied
to a larger-scale execution without changes (and SDCs
become more likely as the number of cores increases).

A. Mathematical Characteristics of Krylov Subspace
Methods

In this section, we explain the mathematical back-
ground of our proposed approach and illustrate signif-
icant features of Krylov Supspace methods that enable
us to detect soft errors. The terms used correspond to
the algorithms presented in the last section.
• Theorem 1.1 (2.4 in [4])

For Conjugate Residual and MINRES on an SPD
system Ax = b, the error ‖em‖2 or ‖x ∗ −xk‖2 is
monotonically decreasing

Proof is based on [4].

We use the terminology used in the previous section.
xm = xm−1 + αm−1pm−1

=

= xk + αk+1pk + . . .+ αm−1pm−1

= xk−1 + αkpk−1 + αk+1pk + . . .+ αm−1pm−1
From the last two statements above, it can be written
that:

‖xm − xk−1‖2 − ‖xm − xk‖2 = ...
= (xm− xk−1)T (xm− xk−1)− (xm− xk)T (xm− xk)
= 2αkp

T
k−1(αk+1pk+ . . .+αm−1pm−1)+α

2
kp
T
k−1pk−1

>= 0
since Theorem 2.2 in [4] indicates that αi >= 0 and

pTi pj >= 0, the energy norm error ‖x∗−xk‖A is strictly
decreasing in CR and MINRES. On the other hand, for
CG, the same term is monotonically decreasing [4].
• Theorem 1.2 (2.5 in [4])

For Conjugate Residual and MINRES on an SPD
system Ax = b the error ‖em‖A or Energy Norm
Error ‖x∗ − xk‖A is strictly decreasing.

From the proof above, it can be written that:
‖xm − xk−1‖2A − ‖xm − xk‖2A = ...

... = (xm − xk−1)TA(xm − xk−1)−
(xm − xk)TA(xm − xk)

... = 2αkp
T
k−1A(αk+1pk + ...+ αm−1pm−1)

+α2
kp
T
k−1Apk−1

... = 2αkp
T
k−1(αk+1pk + ...+ αm−1pm−1)

+α2
kp
T
k−1pk−1

> 0

B. Exploiting Minimization Property
In CG, when we use a SPD A matrix, the quadratic

form φ = 1
2x

TAx − xT b is bounded and Ax = b
is calculated by minimizer of that quadratic form. As
a Krylov subspace method, CG has the minimization
characteristic of any Krylov subspace method, i.e., to
minimize the quadratic form within each Krylov sub-
space [4]. When b = Ax∗ and 2φ = xTkAxk−2xTkAx

∗,
minimizing quadratic form is equal to minimizing the
expression ‖x∗ − xk‖A = (x∗ − xk)TA(x∗ − xk) [4].
Then the A-norm of the CG error is monotonically
decreasing [24].

Ozturk et al. [18] developed algorithmic method based
on this property, that is, monotonically decreasing func-
tion fk = xTk (−rk − b) which we will refer to as Error
Norm.

1) Energy Norm Detection Method: Although error
norm detection method gives reasonable performance in
soft error detection, it has high time complexity, i.e.,
O(n). In this paper, we propose new methodology for
Conjugate Gradient based on minimization property of
Krylov subspace methods. The specific term is Jk =
αkr

T
k rk. Computationally, detection based on this term

has significantly lower overhead than the error norm

indicator, that is O(1) since rTk rk is already computed
as part of implementation of CG (Line 11, Algorithm
3). We call this approach Energy Norm Indicator as we
use the property that energy norm is strictly decreasing
(Theorem 1.1).

‖ek‖2A = eTkAek

= rTk (A
−1)T rk

Note that A is SPD. Therefore it is equal to its transpose.
Then,

‖ek‖2A = rTk A
−1rk

The differences of energy norm ‖ek‖2A−‖ek+1‖2A = Jk
is a decreasing function.
‖ek‖2A − ‖ek+1‖2A = rTk A

−1rk − rTk+1A
−1rk+1

... = (rk+1 + αkA
T pk)

TA−1(rk+1 + αkApk)

−rTk+1A
−1rk+1

... = rTk+1A
−1rk+1 + αkp

T
k rk+1 + αkrk+1pk

+α2
kp
T
kApk − rTk+1A

−1rk+1

‖ek‖2A − ‖ek+1‖2A = αkr
T
k rk

where the last equality comes from the fact that pkApk
= rTk rk

αk
and rTk+1pk = 0. Notice rk+1pk = 0 can be

proved by the spanned Krylov supspace property and
the orthogonality of the residues, or by using pk+1 =
rk+1 + βkpk recursively.

Next, we consider,
Jk = αkr

T
k rk

Jk function is a decreasing but not monotonically
decreasing so it is prone to false positives. However, it
is better than the error norm indicator in terms of time
complexity since its time complexity is O(1), as noted
earlier.

2) Monotonic Residual Detection Method: One
of the fundamental properties of certain algorithms in
Krylov Subspace is that the residual norm of the ap-
proximate solution at each iteration is monotonically de-
creasing. Recently certain algorithms in iterative solvers,
particularly the Conjugate Gradient, have applied ex-
pected (near-) monotonic decrease in the residual as
error detection method [11]. However, in the case of
CG, the method is only a heuristic since residual is not
guaranteed to being strictly monotonic in CG for a SPD
system.

The fundamental idea of GMRES is to minimize the
residual ‖b − Axn‖2 at the n-th iteration where xm is
a vector in the Krylov space Unlike Conjugate Gradi-
ent, the residual decreases monotonically in GMRES
since the corresponding Krylov spaces are nested and
algorithm itself minimizes the residual directly [25].
Formally,

‖rm+1‖2 < ‖rm‖2
The implementation of detection method based on

residual is given as Algorithm 4. As noted earlier, in
Conjugate Gradient, the decreasing of ‖rm‖2 is not

Algorithm 3 CG with Detection by Energy Norm and
Error Norm with Sharp Decreases
1: Choose initial vector x0.
2: r0 = b− Ax0

3: p0 = r0
4: k = 0
5: Choose targeted variable (p||r||x)
6: m = targeted iteration
7: while not converged do
8: if k = m then
9: Inject bit error into targeted variable

10: end if
11: αk =

rTk rk

pT
k
apk

12: xk+1 = xk + αkpk
13: rk+1 = rk − αkApk
14: βk =

rTk+1rk+1

rT
k
rk

15: pk+1 = rk+1 + βkpk
16: /**Error Detection Methods**/
17: fk = xTk (−rk − b) // Error Norm Method
18: κk = fk − fk−1

19: if κk > fk−1 ∗ C then
20: Error detected by Error Norm Indicator
21: else if fk = NAN ‖ INF then
22: Error detected by Error Norm Indicator
23: end if
24: θ = κk + κk−1 + κk−2 + κk−3 + κk−4

25: γ = θ
5

26: if γ < κk then
27: Error detected by sharp decrease
28: end if
29: /* Energy Norm Method */
30: Jk = αkr

T
k rk

31: κk = Jk − Jk−1

32: if κk > Jk−1 ∗ C then
33: Error detected by Energy Norm Indicator
34: else if Jk = NAN ‖ INF then
35: Error detected by Energy Norm Indicator
36: end if
37: k = k + 1
38: end while
39: return xk

guaranteed. Instead, if x∗ denotes the exact solution,
Ax∗ = b, and ek = x∗ − xk is the kth error in the
CG algorithm, e2k is monotonically decreasing. As we
described earlier, this property is used by Ozturk et
al. [18] as leading idea of the error norm indicator which
is able to detect soft error in CG effectively.

Similar to GMRES, CR also minimizes the residual
‖b−Axn‖2 at the nth iteration where xm is a vector in
the Krylov space as pointed out in Theorem 1.1 above.
Therefore, the residual decreases monotonically in CR
as well. A detection method can be designed which
simply observes the behaviour of the residual during
the iteration. As it seen in Algorithm 5 (line 23), our
detection function just observe behaviour of the residual
during iteration.

‖rm+1‖2 < ‖rm‖2

C. Additional Heuristic: Sharp Decrease

Even if error norm fk = xTk (−rk − b) proposed by
Ozturk et al. [18], ‖em‖2 (energy norm) and residual
‖rm+1‖2 (for CR and GMRES) are guaranteed to be
monotonically decreasing for certain cases, an approach
based on these properties can be prone to false negatives.

Algorithm 4 GMRES with Detection by Monotonic
Residual
1: Ax=b linear system and initial vector x0.
2: r0 = b− Ax0 /*Residual Vector*/
3: β = ||r0||2
4: k = 0
5: while not converged do
6: vj+1 = Aqj
7: while i < j do
8: /*Arnoldi Process*/
9: if k = m then

10: Choose vector x, y, h, v, s, r, c
11: Inject bit error into targeted variable with targeted bit range
12: end if
13: hi,j = qi ∗ vj+1

14: vj+1 = vj+1 − hi,jqi
15: end while
16: /* Perform GMRES outer iteration */
17:
18: /* Monotonic Residual */
19: if ‖rm+1‖2 < ‖rm‖2 ∗ C then
20: Error detected
21: else if ‖rm+1‖2 = NAN ‖ INF then
22: Error detected
23: end if
24: k = k + 1
25: end while
26: return xk

This is because soft errors might result in an unexpected
sharp decrease in the indicator value. This limits the
detection accuracy. To deal with this issue, we add a
new heuristic, which is to observe any sharp change of
these functions.

V. EXPERIMENTAL RESULT

We performed all experiments on a cluster where each
node has two fourteen-core Xeon E5-2680v4 processors
operating at 2.4 GHz, with 512 GB main memory.
We used open source implementation of GMRES and
CG and improved it with our detection methods. Our
presentation and implementation assumes execution on
a single machine, however the idea can be applied
to a larger-scale execution without any changes – our
detection methods are independent of the number of
nodes in the system.

A. Experiment Design
We focus on soft faults/errors (bit flips) since they

usually do not result in immediate program interruption,
instead they cause incorrect output. In our experiments,
for each of the detection methods and algorithms, we
consider the percentage of detected bit flips in differ-
ent scenarios (varying iteration number when the flip
happened, the array whose element was impacted, and
bit range for the bit flip insertion). For each case,
we repeat experiments 100 times and report average
detection rates. In calculating accuracy rate, a bit flip
is considered successfully detected if it is 1) detected
within 10 iterations of the insertion, and 2) no false
positives have occurred before the bit flip insertion.

Three metrics is used in our evaluations are as follow.
First, we measure the efficacy of our method by comput-
ing detection accuracy rate, as defined above. Second,
for cases where bit flips go undetected, we calculate the

Algorithm 5 Conjugate Residual with Detection by
Monotonic Residual and Error Norm
1: Choose initial vector x0.
2: r0 = b− Ax0

3: p0 = r0
4: k = 0
5: while not converged do
6: if k = m then
7: Inject bit error into targeted variable
8: end if
9: αk =

rTk Ark

(Apk)TApk
10: xk+1 = xk + αkpk
11: rk+1 = rk − αkApk
12: βk =

rTk+1Ark+1

rT
k
Ark

13: pk+1 = rk+1 + βkpk
14: k = k + 1
15: /***** Detection Methods *****/
16: fk = xTk (−rk − b) /* Error Norm Method */
17: κk = fk − fk−1

18: if κk > fk−1 ∗ C then
19: Error detected by Error Norm
20: else if fk = NAN ‖ INF then
21: Error detected by by Error Norm
22: end if
23: if ‖rm+1‖2 < ‖rm‖2 ∗ C then /* Monotonic Residual Method*/
24: Error detected by Monotonic Residual
25: else if ‖rm+1‖2 = NAN ‖ INF then
26: Error detected by Monotonic Residual
27: end if
28: end while
29: return xk

log of the relative error based on the formula, which is
the relative difference between computed solution and
the true solution xe of Ax = b.

Relative Error = log
(‖x− xe‖2
‖xe‖2

)
.

We calculate the average of the relative error values
among the cases that cannot be detected. Finally, we also
consider the runtime overheads of different methods.

Fig. 2: Matrices from University of Florida Sparse
Matrix Collection [5]. NNZ stands for number of non-
zero value, N represent number of Row and Column

University of Florida Sparse Matrix Collection is an
actively growing sparse matrix set that is widely used by
the numerical linear algebra community [5]. We evalu-
ated these Krylov space methods with chosen square
linear systems from the University of Florida Sparse
Matrix Collection that had the following properties:
matrix size [100, 3000], symmetric, positive definite,
non-symmetric, non-positive definite and real. Feature
and structure of matrices in our experiments are given
in Fig.2.

B. Efficacy of Our Methods

1) GMRES: Our first experiment involved applica-
tion of the simple residual method on GMRES. As can
be seen in Algorithm 4, GMRES contains nested loop.
Iterations of the inner loop are Arnoldi Process that
orthogonalizes the matrix. Due to the fact that most of
the time is spent inside of this loop during the execution,
we inject fault into beginning of the inner loop. We
defined 7 different vectors as target for fault injection
since they require significant memory. These are x, y, h,
v, s, r, and c. The x represents solution vector and SDC
occurred in the x vector has significant effect on the final
result. Our method is capable to detect all occurred SDC
in x vector for these 5 different matrices. Fig.6 represent
the size of fault injected vectors in our experiment –
the possibility of SDC is proportional with vector size.
Therefore, catching soft error in larger vectors is more
important than a smaller one. As is seen in Fig.3 and
Fig.4, our method has a high accuracy rate (except bp0
matrix) in detecting soft error occurring in y and h
vectors, which are the larger vector.

Our main observation is that the effectiveness and per-
formance of our method is based on the matrix type. As
can be seen form Figures 3 and 4, the experiment with
bp0 is less successful than other matrices – our method
has lower detection rate as well as higher segmentation
error case. The reason is that the sparsity structure of
bp0 is different from other matrices, i.e, the distribution
of non-zero value in the matrix is non-homogeneous as
it seen in Fig.2.

In certain cases, segmentation error occurred due to
the soft error after fault injection. We ignore those cases
and focus on the SDC that leading us incorrect result,
since restarting with last checkpoint is a simple option in
these cases. We have also calculated the average of the
relative error of our method in GMRES among the cases
that cannot be detected with these 5 matrices. While a
large deviation in final result is possible, these are arising
from matrices that are small in size, and thus, bit-flips
at these locations are relatively unlikely.

2) Conjugate Gradient: For CG, we evaluate the
performance of Energy Norm method and compare with
Error Norm method proposed in earlier work. There
are three major vectors in design of CG (Algorithm
3) – x, r, and p. 5 different real matrices with SPD
property obtained from the University of Florida Matrix
Collection [5] were used – 494_bus, bcsstk06, bcstk20,
bcsstk19, and bcsstk08. Detail information of those
matrices is given in Fig.2.

Fig.8 demonstrate the performance of Energy Norm
method on CG. We can see that Energy Norm can
reasonably overcome soft error in CG for r and p cases.
However, it is not so effective for x cases. Therefore,
we have combined Energy norm with Error Norm,
resulting in improved detection accuracy. For example,
our methods has almost 60% accuracy rate in detection
of soft error occurred in x vectors with 494_bus and

Fig. 3: Accuracy rate for Residual method in GMRES – fault injection into h, v, r vectors (we exclude x case since
it has 100% detection rate for all cases). * represents program termination case due to injected fault

Fig. 4: Accuracy rate for Residual method in GMRES – fault injection into c, s, y vectors * represent program
termination case due to injected faults

Fig. 5: Inaccuracy in Results Due to Undetected Errors (The Relative Error) – Residual detection method on GMRES
(Missing values are not applicaple)

Fig. 6: The fault injected vectors size in GMRES. The
mr stands for number of inner iteration limit (Iteration
Number of Arnoldi). The n is size of solution vector.

bcsstk06 matrices. The average of all matrices in CG
for the cases where we inject fault into r and p within
bit-range 63-60 is 75%. It even has better performance
for bit-range 59-56 which is almost 90%.

We also measured the average relative error of our
method on CG. Fig.9 demonstrate the change of solution
in log10 (Relative Error). As it seen in the Fig.9, all
of the results are negative, showing low errors. For
instance, the log (base 10) of the overall relative error
for the x case in bit range 63-60 is -1.01815 (Time
frame 60%, bcsstk06). This means that most of the soft
errors that result in large error in the solution vector are
detected by our detection methods. On the other hand,
Fig.10 stands for the relative error of Error Norm itself
(without any improvement or combination). Error Norm
itself has a large average of relative error for the case in
which fault injected in x vectors in the bit-range 63-60.

The other observation is that unlike GMRES, the
matrix type does not have a large impact on the perfor-

mance of our methods as it seen in Fig.8. Ultimately, it
can be concluded that Energy Norm, based on minimiza-
tion property of Krylov Subspace method, is effective
in either detecting errors or limiting the impact of soft
errors on final results.

3) Conjugate Residual: In the case of CR, since the
residual vectors should be A-orthogonal or conjugate, a
detector based on monotonic property of the residual
can be used. Like CG, three vectors of interest are
x, r, and p. First, we only apply monotonic residual
detection method for catching error in CR. Then, to
increase detection rate for the x vector, we combine
residual method with the error norm method. We have
used 1000*1000 SPD artificial matrix as well as sev-
eral real matrices attained from Universify of Florida
Sparse Matrix Collection (bcspwr5, bcsstk03, bcsstk06,
bcsstk20).

Fig.11 shows the accuracy rate of the method com-
bining residual with error norm. Results are taken from
case in which fault injected into r vector for 1000*1000
artificial SPD matrix. It really has high detection rate
particularly for scenario that faults are injected in bit
range 59-56. Fig.12 stands for detection rate of Mono-
tonic Residual Method with Error Norm in CR for cases

Fig. 7: Accuracy rate of Energy Norm method on Conjugate Gradient – Results reported for 5 matrices and the
overall averages

Fig. 8: Accuracy rate of Energy Norm combined with Error Norm on Conjugate Gradient (we exclude x case in
bit-range 59-56 since it has low performance) – Results reported for 5 matrices and the overall averages

Fig. 9: Inaccuracy in Results Due to Undetected Errors (The Relative Error) in bit-range 63-60 – Energy Norm
with Error Norm on Conjugate Gradient

Fig. 10: Inaccuracy in Results Due to Undetected Errors (The Relative Error)

where fault injected into X. In Fig.13 we have shown all
result case by case taken from 4 different real matrices.
According to these results, it can be concluded that
the combined method is quite effective. We have also
calculated the average Relative Error values among the

cases where soft error can not be detected. The result is
given in Fig.14. It simply indicate that for all scenarios
in the experiment most of the soft errors that cause large
error in the solution vector are detected by our detection
methods.

Fig. 11: Detection Accuracy of Residual detection
method with Error Norm on Conjugate Residual (r
vector - artificial SPD matrix)

C. Overhead of Our Methods
In this section, we focus on the overall time overhead

of our proposed methods for soft error detection in CR,
GMRES and CG. As explained and proved above, the
time complexity of Energy Norm is O(1). The time
complexity of Monotonic Residual detection method
depends on calculation of residual vector. We compare
overhead of Monotonic Residual method, Energy Norm
and Error Norm in CG, CR and GMRES. One of
the reason behind this small overhead is that Residual
is calculated already in the implementation of these
application to decide termination of iteration. As it seen
in the Fig.15, overhead caused by our methods are
modest, which further establishes the effectiveness of
our methods.

D. Discussion: Other Methods in the Literature
As explained in the related work section, there has

only been limited work proposed regarding to fault
tolerance in GMRES. Chen [3] proposed a methodology
for iterative solvers such as GMRES, CG, and BiCG. His
methodology applies invariants to check if SDC occured
or not. However, his approach has additional computa-
tion and parallel communication to check invariant of
algorithm (as also indicated by Elliott as well et al.
[7]). Bridges et al. [20] proposed FT-GMRES (Fault
Tolerant GMRES) – this approach requires rewriting an
application with a different algorithm to make it resilient
towards soft errors. Elliott et al. [7] evaluated effect of
soft error on the GMRES Krylov Subspace methods as
well. They basically defined theoretical upper limits for
some value in the application and by using this bound
they proposed SDC detector. Their detection method is
only able to detect error that exceeds the bound, which
depends on the input matrix.[7].

Unlike GMRES, there have been certain efforts on the
detection of soft error in Conjugate Gradient. Till now,
many researcher have used the residual as a soft error
detector for CG [18], [11]. However, as we explained
above the residual value is not guaranteed to decreasing
for all iterations, and thus the approach is only a
heuristic. It is not strictly monotonically decreasing and
then this approach is only heuristic. Therefore, it leads
false positive cases.

Recently, Ozturk et al. [18] proposed monotonically
decreasing function which we refer to as the Error Norm,

Fig. 12: Detection Accuracy of Residual detection
method with Error Norm on Conjugate Residual

to observe abnormal routine in CG. They also com-
bined their function with Invariant checking algorithm
(proposed by Chen [3] and improved by Loh et al.
[15]). This method checks the invariant φk which is the
conjugate property of the direction vector pk [18].

φk =
pTkApk−1

‖pk‖2‖Apk−1‖2
However, calculating φk is expensive and results

in substantial overheads[18]. Therefore, we combined
Error Norm approach with the function called Energy
Norm where the time complexity of Energy Norm
calculation is O(1).

Scholl et al. [1] proposed following equation as a soft
error detection method that they called λ detection:

bT pi = xTkwi
in which wi represent Api for i < k. The fundamental
idea behind this approach is observing inner product on
the left-hand side in the equation since it is independent
over continuous iteration. Scholl et al. [1] assigned this
left-hand side in a scalar variable λi = bT pi so that
they can check whether the equality fails to hold within
some tolerance or not. As demonstrated by Ozturk et al.
[18], λ detection has high overheads and works only for
higher bits.

VI. CONCLUSION

This paper has focused on the problem of detecting
soft errors in the case of Krylov subspace methods,
particularly, CG, GMRES, and CR. By identifying key
numerical properties, we develop efficient and accurate
detectors of soft errors. Particularly, we identify a term
we refer to as energy norm, which is decreasing for our
target class of methods. Next, though detectors based on
error norm and residual value had been used in the past,
we have expanded the set of algorithms on which they
can be applied.

We have extensively evaluated our proposed methods
using several real matrices. Our evaluation shows high
detection accuracy (especially for GMRES and CG).
Moreover, we find that average error due to undetected
errors is small, indicating that most significant errors get
detected. Finally, we see low overheads of applying our
method.

REFERENCES

[1] Michael A Kffochte Alexander Scholl, Claus Braun and Hans-
Joachim Wunderlich. Efficient algorithm-based fault tolerance
for sparse matrix operations. 46th Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2016.

[2] Greg Bronevetsky and Bronis de Supinski. Soft error vulnerabil-
ity of iterative linear algebra methods. Proceedings of the 22nd
annual international conference on Supercomputing, ACM, 2008.

[3] Zizhong Chen. Online-abft: An online algorithm based fault
tolerance scheme for soft error detection in iterative methods.
ACM SIGPLAN, 48(8).

[4] Michael Saunders David Chin-Lung Fong. Cg versus minres:
An empirical comparison. pages 17(1):44–62, 2012.

[5] Yifan Hu Davis Timothy. The university of florida sparse matrix
collection. 2011.

Fig. 13: Accuracy rate of Residual method with Error Norm on Conjugate Residual (r vectors)

Fig. 14: Relative Error with Residual method with Error Norm on Conjugate Residual

Fig. 15: Overhead of detection methods; Monotonic
Residual (GMRES), Mon. Res. with ERROR Norm (CR)
and Energy Norm with Error Norm (CG)

[6] Jack Dongarra, Thomas Herault, and Yves Robert. Fault tol-
erance techniques for high-performance computing, chapter 1,
pages 3–85. Springer International Publishing, 2015.

[7] James Elliott, Mark Hoemmen, and Frank Mueller. Evaluating
the impact of SDC on the GMRES iterative solver. In 2014
IEEE 28th International Parallel and Distributed Processing
Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 1193–
1202, 2014.

[8] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen,
Kurt B. Ferreira, and Ron Brightwell. Detection and correc-
tion of silent data corruption for large-scale high-performance
computing. In SC Conference on High Performance Computing
Networking, Storage and Analysis, SC ’12, Salt Lake City, UT,
USA - November 11 - 15, 2012, page 78, 2012.

[9] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Research of the
National Bureau of Standards, 49(6):409–436, 1952.

[10] Martin H.Gutknecht. A brief introduction to krlov space methods
for solving linear systems. Frontiers of Computational Science.
Springer,Berlin,Heidelberg, pages 53–62, 2007.

[11] Mehmet Can Kurt Jiaqi Liu and Gagan Agrawal. A practical
approach for handling soft errors in iterative applications. IEEE
International Conference on Cluster Computing, 2015.

[12] Jieyang Chen Dingwen Tao Sihuan Li Panruo Wu Hongbo Li
Kaiming Ouyang Yuanlai Liu Fengguang Song Liang, Xin and
Zizhong Chen. Correcting soft errors online in fast fourier
transform. 2017.

[13] Jiaqi Liu and Gagan Agrawal. A methodology for application-
level asynchronous checkpointing for mpi applications. In In
Euro-Par 2014 Resilience Workshop(Euro-Par2014WS), Novem-
ber,2014, 2014.

[14] Jiaqi Liu and Gagan Agrawal. Soft error detection for iterative
applications using offline training. IEEE 23rd International
Conference on High Performance Computing (HiPC), 2016.

[15] Kewal K. Saluja Loh, Felix and Parameswaran Ramanathan.
Fault tolerance through invariant checking for iterative solvers.
VLSI Design and 2016 15th International Conference on Em-
bedded Systems (VLSID), 2016 29th International Conference
on. IEEE, 2016.

[16] Gokcen Kestor Joseph Manzano Osman Unsal Samrat Chatterjee
Mutlu, Burcu Ozcelik and Sriram Krishnamoorthy. Characteri-
zation of the impact of soft errors on iterative methods. 2018.

[17] Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V.
Kalé. Acr: automatic checkpoint/restart for soft and hard error
protection. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’13, Denver,
CO, USA - November 17 - 21, 2013, 2013.

[18] Muhammed Emin Ozturk, Marissa Renardy, Yukun Li, Gagan
Agrawal, and Ching-Shan Chou. A novel approach for handling
soft error in conjugate gradients. In 2018 IEEE 25th Interna-
tional Conference on High Performance Computing (HiPC), pp.
193-202. IEEE, 2018), 2018.

[19] Christina Pacher Pachajoa, Carlos and Wilfried N. Gansterer.
Node-failure-resistant preconditioned conjugate gradient method
without replacement nodes. 2019.

[20] Kurt B Ferreira Michael A.Heroux Patrick G, Bridges and Mark
Hoemme. Fault-tolerant iterative methods via selective reliability.
2012.

[21] Yousef Saad. Iterative methods for sparse linear systems. Society
for Industrial and Applied Mathematics, 2nd edition, 2003.

[22] Piyush Sao and Richard Vuduc. Self-stabilizing iterative solvers.
In The Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems.ACM,2013, 2013.

[23] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.
Dram errors in the wild: a large-scale field study. Commun.
ACM, 54(2):100–107, 2011.

[24] Jonathan Richard Shewchuk. An introduction to the conjugate
gradient method without the agonizing pain. 1994.

[25] Daniel B.Szyld Valeria Simoncini. Recent computational devel-
opment in krylov subspace methods for linear systems. pages
14(1):1–59, 2007.

[26] Martin H.Schults Yuocef Saad. Gmres: A generalized minimal
residual algorithm for solving nonsymmetric linear systems.
SIAM Journal on scientific and statistical computing, pages
7(3):856–869, 1986.

