
EasyChair Preprint
№ 15790

V2G Fuzzer : Fuzzing Tool for Implementing
Electric Vehicle Charger V2G Communication

Yu-Bin Kim, Dong-Hyuk Shin, Jae-Jun Ha and Ieck-Chae Euom

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 3, 2025

V2G Fuzzer : Fuzzing Tool for Implementing

Electric Vehicle Charger V2G Communication

Yu-Bin Kim1*, Dong-Hyuk Shin2, Jae-Jun Ha2 and Ieck-Chae Euom3†
1, 2, 3 System Security Research Center, Chonnam National University

kingyoubin97@jnu.ac.kr, shindh2@jnu.ac.kr, wowns1106@jnu.ac.kr

iceoum@jnu.ac.kr

Abstract

The rise in electric vehicles(EVs) has led to a rapid increase in the number of electric

vehicle charging stations(EVCSs) with approximately 5 million installed worldwide by

2023. These EVCSs are operated according to various standards and protocols. ISO

15118, which is used for communication between EVs and EVCS, lacks security

guidelines, and this absence can result in numerous vulnerabilities due to improper

implementation. This study introduces the V2G Fuzzer, a security testing tool designed

to prevent vulnerabilities caused by incorrect implementations in EV CSs. The tool is

designed as a black-box testing solution capable of handling various implementations,

regardless of the EVCS platform or programming language used. The fuzzing technique

is applied to identify errors and discover vulnerabilities in the application layer where

messages are processed. To validate the effectiveness of this approach, fuzzing tests were

conducted on open-source EVCS implementations. The results confirmed that the tool is

effective in determining whether the open-source projects correctly implement the ISO

15118 standard and in detecting potential vulnerabilities.

1 Introduction

The rapid adoption of electric vehicles (EVs) is transforming the automotive ecosystem, with

projections indicating that over 50% of all vehicles will be electric in the near future [1]. This surge has

led to the installation of more than 5 million electric vehicle charging stations (EVCS) globally as of

2023, creating a large need for charging infrastructure [2]. A comprehensive infrastructure is essential

to provide effective EV charging services, comprising various components and standards. Key

components include EVCS, Central Management Systems (CMS), and Electric Mobility Service

* Masterminded EasyChair and created the first stable version of this document
† Created the first draft of this document

Providers (e-MSP). The ISO 15118 standard plays a crucial role by governing communication between

EV and EVCS among the standards facilitating this ecosystem.

ISO 15118 not only manages the communication protocols but also controls the charging process

and handles the transmission of critical information such as payment details. Encryption via Transport

Layer Security (TLS) is supported by ISO 15118 however, its use is not mandatory. Approximately 90%

of EVCSs do not implement TLS encryption, as observed in practice [3]. The ISO 15118 standard lacks

specific security guidelines and has insufficient implementation requirements. This deficiency creates

opportunities for attackers to exploit the communication interface between EVs and EVCSs, potentially

leading to hacks of charging stations or broader attacks on the charging infrastructure. Indeed, various

threats have been identified targeting the interfaces that communicate with EVs [4].

This study proposes the design of a black-box fuzzing tool aimed at evaluating whether EVCSs

have properly implemented the ISO 15118 standard and at identifying additional vulnerabilities at the

application layer. This approach allows for the assessment of system functionality without examining

internal code structures, logic, or implementation details. Fuzzing techniques employing various

strategies are utilized to explore and exploit security vulnerabilities deeply embedded within protocol

interactions. The main contributions of this paper are as follows:

(i) We propose a black-box fuzzing methodology that enables the evaluation of multiple ISO 15118

implementations without prior knowledge of the system's internal workings. This approach allows us

to assess the functionality of a system without delving into its internal code structure, logic, or

implementation details. (ii) We utilize a range of fuzzing techniques employing various strategies to

explore and exploit security vulnerabilities deeply embedded in protocol interactions. This research

sheds light on the effectiveness of fuzzing as a proactive security measure, offering valuable insights

into identifying and addressing potential weaknesses within the context of ISO 15118 protocol

interactions. (iii) Using our proposed fuzzing tool, we identify several vulnerabilities in EVCS
implementations. Based on these findings, we suggest measures to enhance the security of the ISO

15118 standard.

2 Background and Related Work

2.1 V2G Communication

First published in 2013, ISO 15118 enabled communication between EV and EVCS, known as

Vehicle-to-Grid (V2G) communication. ISO 15118 defines the requirements for implementing

communication from the physical layer up to the application layer within the OSI seven-layer model

[5]. It also provides test cases to verify proper compliance with the standard. Figure 1 illustrates the

relationship between the ISO 15118 standard and the OSI seven-layer model. ISO 15118 operates based

on IEC 61851, which is used for conventional EV charging. Power Line Communication (PLC) is

performed through the CP (Control Pilot) line of the EVCS cable, and digital communication based on

ISO 15118 can be selected via the duty cycle of the CP line [6].

The main standards for communication are ISO 15118-2[7] and ISO 15118-3[8]. ISO 15118-3

defines the requirements for the physical and data link layers for communication between EVs and

charging stations and specifies how to transmit data using PLC communication. ISO 15118-2 defines

the requirements related to the network layer up to the application layer. ISO 15118-2 specifies the

messages exchanged between EVs and charging stations, outlining the flow from IP identification of

the EV and EVCS to the termination of charging. Additionally, data is defined to be transmitted in the

EXI (Efficient XML Interchange) format, which encodes XML (Extensible Markup Language) data.

EVs and charging stations that satisfy the requirements defined in these standards can perform data

communication based on ISO 15118.

2.2 Fuzzing Test

Fuzz testing, commonly known as fuzzing, is a software testing technique used to discover coding

errors and security vulnerabilities in software. A fuzzer is a type of software that automates this testing

process by providing unexpected or random data inputs to a program. The primary goal of fuzzing is

not only to test software functionality but also to explore and identify bugs and vulnerabilities such as

coding errors, buffer overflow vulnerabilities, and possibilities of denial-of-service attacks. This can be

achieved by inducing unexpected behavior through the use of malformed or random data as program

inputs. Fuzzing discovers defects more easily by attempting various combinations of input values to

cause crashes or abnormal behavior in software. Traditional fuzzing techniques can be broadly

classified into three categories: black-box fuzzing, white-box fuzzing, and gray-box fuzzing.

Black-Box Fuzzing: Black-box fuzzers like zzuf[9] do not require access to the source code or

knowledge of the internal implementation details of the target software. Performing fuzzing by

generating test cases randomly in a black-box manner is relatively straightforward, but this approach

can be inefficient. Randomly generated input values may be rejected as invalid by the software or may

fail to reach deeper parts of the code, limiting the effectiveness of the testing. However, if information

about the protocol used by the target or the format of the messages is known, black-box-based fuzzing

can still perform effective testing. This approach can be highly practical and enhance testing efficiency.

White-Box Fuzzing: White-box fuzzing techniques optimize test case generation by utilizing the

source code of the target software. These techniques analyze the code to systematically explore

execution paths using dynamic symbolic execution and other advanced methods. This allows for a more

thorough examination of the software to discover bugs and vulnerabilities. However, white-box fuzzing

requires access to the source code and may not be practical in situations where the source code is

unavailable or resources are limited.

Gray-Box Fuzzing: Gray-box fuzzing is more practical for real-world applications where source code

access is not available because it does not require source code access. Gray-box fuzzers like AFL[10]

Figure 1: ISO 15118 Protocol Stack and Relationship to OSI Layer 7

instrument the target binary to collect useful runtime information such as code coverage data. This

feedback guides the fuzzer to dynamically generate new test cases that are more likely to explore

unexplored code paths, improving the efficiency and effectiveness of the fuzzing process.

In summary, fuzz testing is a powerful technique for discovering software vulnerabilities by

injecting unexpected inputs and monitoring the resulting behavior. The choice among black-box, white-

box, and gray-box fuzzing depends on specific testing requirements, the availability of source code, and

resources. Testers can effectively identify and mitigate potential security risks in software systems by

leveraging the strengths of each approach.

2.3 Network Protocol Fuzzing

Network protocol fuzzing is a software testing technique used to detect vulnerabilities in network

protocols [11]. It works by supplying the system with randomly generated or intentionally malformed

input data to trigger abnormal behavior. Network protocol fuzzing is primarily employed to identify

vulnerabilities in protocol implementations by inducing errors in message structures or sequences,

revealing potential security flaws.

Two main types of network protocol fuzzing exist. The first targets protocols with publicly available

specifications, as seen in research like L2Fuzz[12] and Z-Fuzzer[13]. These approaches create test cases

based on official protocol documentation to find vulnerabilities. The second type focuses on protocols

without publicly available specifications. Research such as Snipuzz[14] uses response values from

messages to infer message formats, allowing fuzzing in protocols where the specifications are not

disclosed.

The complexity of network protocol fuzzing goes beyond simple data exchange. It also involves

handling functions like transmission error detection, timeout and retry management, and flow control,

which makes it more difficult than general software fuzzing. A well-designed communication model

that manages the protocol’s communication flow and states is essential for effective fuzzing. Incorrect

or incomplete communication models hinder successful fuzzing efforts.

2.4 Related Work

The fuzz testing research on the ISO 15118 protocol stack focused on identifying security

vulnerabilities in the communication interface between vehicles and the grid. In particular, the study

targeted the TLS protocol, manipulating message fields to uncover various vulnerabilities during the

TLS handshake process [15]. By using fuzzing techniques to inject malformed certificate data and

manipulate message fields, the research demonstrated that the ISO 15118 protocol is vulnerable to

different forms of invalid data inputs. This study contributed to a deeper analysis of potential risks in

secure communications within the electric vehicle charging infrastructure. However, since the research

was limited to the TLS layer, it was difficult to identify vulnerabilities at higher layers, such as the

application layer.

In addition, similar research was conducted targeting CMS. This research performed fuzzing tests

based on the Open Charge Point Protocol (OCPP), which governs the communication between EVCS

and CMS [16]. OCPP, as a key component of the EV charging infrastructure, ensures interoperability

between EVCS and CMS. The study generated two types of test cases: one that adhered to the protocol's

constraints and another that deliberately violated them, to verify how well the CMS implemented the

OCPP protocol. Fuzzing, performed with consideration of OCPP's state machine transitions, uncovered

vulnerabilities arising from complex interactions. Among the vulnerabilities found, 5 were confirmed

as Common Vulnerabilities and Exposures (CVEs), with 7 more under review.

3 V2G Fuzzer Design

This section examines the design of the V2G fuzzer and analyzes the specific functions of each

component. First, it describes the design of the communication model used to perform network protocol

fuzzing on EVCS. Next, it provides a detailed explanation of each component of the V2G fuzzer. Figure

2 shows the architecture of the V2G fuzzer.

The communication model for fuzzing the EVCS through the interaction between the EV and EVCS

is designed and implemented to enable seamless communication with the EVCS. The EV and EVCS

communicate using the ISO 15118 standard, an open protocol. Based on this standard, a top-down

approach was employed to design the communication model. The focus of this study is to perform

fuzzing tests targeting the application layer within the EV charging communication flow. Therefore,

the model is designed to enable fuzzing at specific points in the communication flow. Figure 3 illustrates

the V2G communication process following the ISO 15118 standard, and the model ensures that fuzzing

can be applied to the application layer during this process. This fuzzing tool is designed as a black-box

approach to be performed directly on actual EVCS. This allows fuzzing to be conducted without

dependency on the language or platform in which the EV CS is implemented. Additionally, while white-

box or gray-box approaches require knowledge of the code or techniques for emulating the EVCS

firmware, the black-box approach does not require such techniques, making it a more practical solution.

This tool establishes a session with the EVCS, allowing communication to input messages—

something that conventional network fuzzing tools find challenging. While it similarly inputs data

through packets, it follows the specific communication sequence of the EV charger, enabling fuzzing

that is specialized for EVCS During the design process, a major challenge was the lack of suitable

existing fuzzing tools to reference for EVCS. Consequently, it was necessary to develop a dedicated

fuzzing tool for EVCS from the ground up. To address this, a communication model was designed to

simulate the network protocol between chargers and electric vehicles based on EVCS simulators. This

design established a foundation for more effectively analyzing potential vulnerabilities in V2G

communication. This fuzzing tool establishes a session with the EVCS and generates messages to

perform fuzzing on the target EVCS. During the fuzzing process, the Message Generator creates

messages, and each fuzzing module manages these messages and transmits values accordingly. The

Figure 2: V2G Fuzzer Architecture

Error Detector then checks the responses. The EVCS uses TCP communication, and if the firmware or

system of the charger crashes, no TCP response is received. This setup is designed to identify whether

an error occurred based on the input by detecting the absence of a response.

3.1 Device Connector

The Device Connector facilitates the establishment of a V2G (Vehicle-to-Grid) session between an

EV and an EVCS. This session enables communication when the EV and the EVCS are connected via

a charging cable. Upon connection, the EV initiates the Signal Level Attenuation Characterization

(SLAC) protocol, which verifies the physical link between the EV and EVCS and exchanges necessary

MAC addresses for communication.

Following SLAC, the SECC Discovery Protocol (SDP) is executed, allowing the exchange of IP

addresses between the EV and EVCS. Once IP addresses are exchanged, TCP session is established,

enabling message transmission. Given that communication depends on the TCP protocol, it is crucial

to manage the Seq and Ack numbers accurately when transmitting fuzzing messages. Incorrect Seq and

Ack number management may disrupt communication or result in message rejection by the EVCS. The

Device Connector ensures this precise management of Seq and Ack numbers, thereby maintaining

reliable V2G communication.

3.2 Fuzzing Module

This study utilizes three fuzzing mechanisms—Random Fuzzer, State Machine Fuzzer, and

Constraint Fuzzer—to test the security of EVCSs using the ISO 15118 protocol.

Random Fuzzer: The Random Fuzzer generates XML data based on the XML schema defined in ISO

15118, mutating the values of XML elements without violating the schema. The fuzzing is performed

by altering the data’s type, value, length, and by using null values. This approach allows testing of

multiple scenarios where vulnerabilities might occur.

Figure 3: V2G Communicaion Sequence

State Machine Fuzzer: The State Machine Fuzzer simulates valid communication paths between the

EV and EVCS before introducing fuzzing at specific states, providing deeper protocol coverage. The

fuzzer follows valid ISO 15118 message sequences, such as those for starting a charging session, and

performs fuzzing from the state reached. ISO 15118 defines 14 states for the EVCS, and the state

machine fuzzer facilitates fuzzing at specific states. For example, in the Wait for

supportedAppProtocolReq state, the EVCS waits for the SupportedAppProtocolReq message, and the

fuzzer generates messages based on this to conduct effective fuzzing. The fuzzer ensures that all states

are covered.

Constraint Fuzzer: The Constraint Fuzzer operates by applying specific constraints to XML attributes

when generating messages. For example, the ServiceScope element in the ServiceDiscoveryReq

message is a string type with a length limit of 32 bytes. The fuzzer ensures that even within these

constraints, vulnerabilities can be discovered. Additionally, the fuzzer tests violations of such

constraints to identify whether the EVCS correctly handles exceptions. This process ultimately verifies

whether the EVCSs is properly implementing the ISO 15118 standard.

3.3 Message Generator

The message generator is finely tuned to perform effective fuzzing on EVCS, considering the

complexity of ISO 15118. It is designed to conduct fuzzing tests on EVCS by utilizing the XML schema

provided by ISO 15118. Data mutations occur in four ways: type mutation, value mutation, data length

mutation, and the insertion of null values when generating messages. Message generation is divided

into two main approaches. The first approach generates data that adheres to the constraints, based on

the 14 messages exchanged during communication between the EV and EVCS. This method is used to

verify whether the EVCS is correctly implemented and to identify any potential vulnerabilities under

ISO 15118-compliant conditions. The second approach violates these constraints, testing how robustly

the EVCS responds when given values that do not conform. This method assesses the system’s

resilience and security by analyzing the effects of exceptional or invalid inputs on the EVCS.

3.4 Error Detector

The error detector plays a role in detecting errors or bugs that occur in EVCS, identifying

exceptional situations. Since EVCS and EV are fundamentally connected via TCP communication, any

bugs in the EVCS software can be detected immediately. When a software bug occurs, the software is

unable to respond to TCP requests due to the exceptional situation. For this reason, after sending a

fuzzing message, the TCP response is checked before the next fuzzing message is transmitted. However,

ISO 15118 does not define specific responses to exceptional input values, making it difficult to identify

the exact error that has occurred in many cases. This study addresses this challenge by utilizing software

debug outputs to analyze errors in more detail. As a result, it becomes possible to accurately identify

which fuzzing message triggered the error.

Additionally, the responses are analyzed to verify that correct responses are returned for input values

conforming to the standard. For example, according to the ISO 15118 standard, when the EV charger

receives a valid input, it is defined to return the value “OK” in the Response Code field. By verifying

that the expected response is received for standard-compliant input values, compliance with the standard

can be assessed.

4 Implementation and Analysis

This section presents the experimental environment and the analysis of the fuzzing test results. In

this study, only the Constraint Fuzzer and Random Fuzzer were utilized, while the State Machine Fuzzer

was not used, and fuzzing was performed on a single state. The fuzzing process targeted the state of the

electric EVCS that waits for the supportedAppProtocolReq message.

4.1 Experimental Environment

This study conducted fuzzing tests on EVCS using the open-source software AcCCS[17], which

mimics the communication of real EVCS rather than using actual EVCSs. AcCCS was developed by

Idaho National Laboratory in the United States to sniff data and perform man-in-the-middle attacks on

communication between electric vehicles and EVCS. The experimental environment, as shown in

Figure 4, utilized two virtual environments—one running the fuzzing tool and the other running the

AcCCS software. The communication was established over IPv6, simulating a real EVCS environment.

This setup was designed to facilitate network fuzzing on actual EVCS in future tests.

4.2 Constraint-Based Analysis

AcCCS was fuzzed to verify whether it processes data in compliance with the specified constraints.

ISO 15118 provides the constraints for the SupportedAppReq message, which are listed in Table 1. The

fuzzing process, based on these constraints, revealed three software errors, as shown in Table 2. These

errors include Out Of Memory Error, Index Error, and ParseError. Figure 5 is an Error Massage of

AcCCS in action Each of the three errors caused AcCCS to halt, which could potentially lead to Denial

of Service (DoS) attacks. The ProtocolNameSpace element in the SupportedAppProtocolReq message

was the source of the errors, while other elements remained unaffected. ProtocolNameSpace is a string-

Elment Type Length Data Description

ProtocolNameSpace Stirng 100 Specific protocols supported by EVCS

VersionNumberMajor UnsingnedInt - Major version number of the protocol

VersionNumberMinor UnsingnedInt - Manor version number of the protocol

SchemaID UnsingnedByte - SchemaID assigned to the protocol

Priority UnsingnedByte 1~20 Protocol priority

Table 1: SupportedAppProtocolReq Message Elements

Figure 4: Experiment environment

type element limited to 100 characters. AcCCS, however, failed to handle special characters in the string

value, resulting in a ParseError. When AcCCS parsed the XML data, characters like <, >, and . caused

ParseErrors, and due to the lack of exception handling, the program terminated unexpectedly.

An Index Error occurred when the value of the ProtocolNameSpace element exceeded 30 characters.

Although AcCCS should accept up to 100 characters, as defined by the standard constraints, it failed to

do so. The Out Of Memory Error occurred when continuous data input overwhelmed the memory. The

EXI decoding module in AcCCS could not handle the sustained input, leading to Out of Memory Error

These three errors occurred despite AcCCS following the standard constraints, mainly due to poor

exception handling and flawed implementation. Fuzzing without following the constraints produced

similar results to those obtained while adhering to the constraints. This analysis confirmed that errors

can be identified in software implementing electric vehicle charging communication. Testing a single

state revealed three errors, suggesting that further fuzzing across multiple states may uncover additional

issues. The discovery of three vulnerabilities in a single state suggests that additional vulnerabilities

could emerge when fuzzing is performed on other states. Furthermore, identifying these vulnerabilities

requires initiating communication prior to handling application-layer messages, which can be

challenging for conventional fuzzing tools to detect. Thus, the effectiveness of the proposed fuzzing

tool was confirmed.

5 Discussion

This study raises two key discussion points the issue of validity verification and the actual design

of charging hardware. We developed a methodology to fuzz EVCS and performed fuzzing on EVCS

Error Type Occurred Element Cause

Index of Error

ProtocolNameSpace

Element value greater than or equal

to 30 characters

Parse Error Special symbols

Out of Memory Mass Data Input
Table 2: List of errors discovered

Figure 5: AcCCS error message

simulations. However, since we did not conduct fuzzing on the actual firmware and software installed

in real EVCS, further fuzzing on real-world EVCS is necessary for proper validity verification.

Additionally, the introduction of new evaluation metrics is required to ensure thorough verification.

While the experiments were conducted in a virtual environment, it is necessary to implement the

PLC used by EVCSs to enable testing on actual chargers. There are existing studies that have

established communication testbeds using real power line modems, and based on this, it is essential to

incorporate hardware elements into future work.

6 Conclusions and Future Research

The increasing number of electric vehicles (EVs) has led to a rise in the number of EVCSs, and the

infrastructure for EV charging services is being actively developed. Standards and protocols exist to

support the implementation of EVCS infrastructure, and among them, ISO 15118 has gained significant

attention for enabling V2G communication. However, implementing ISO 15118 presents challenges,

as the standard includes limited security guidelines, leading to errors and vulnerabilities due to improper

implementation. To address this, we propose a fuzzing tool to test whether EVCS correctly implement

the ISO 15118 standard. The fuzzing tool incorporates a Constraint Fuzzer, a State Machine Fuzzer,

and a Random Fuzzer, which interact to manage the complex communication processes and state

machines of EVCS. These fuzzers assess compliance with constraints and identify potential

vulnerabilities.

We conducted fuzzing on an EVCS communication simulator and identified three vulnerabilities.

However, since this fuzzing was limited to a single state, future research will expand fuzzing to all state

machines to discover more errors and vulnerabilities. Additionally, we plan to continue our research by

testing EVCS firmware and other open-source projects related to EVCS communication.

Acknowledgment

 "This work was supported by Institute for Information & communications Technology Planning &

Evaluation(IITP) grant funded by the Korea government(MSIT)(No.IITP-RS-2022-II221203, 50%

contribution, Regional strategic Industry convergence security core talent training business) and This

work was supported by a grant from the Korea Electric Power Corporation (R24XO01-4, 50%

contribution) for basic research and development projects starting in 2024.

References

National Geographic. (2017). Electric cars may rule the world’s roads by 2040. Retrieved from

https://www.nationalgeographic.com/news/2017/09/electriccars-replace-gasoline-engines-

2040(Accessed: September 20, 2024).

BloombergNEF. (2023). Electric vehicle outlook 2023.

Szakály, M., Köhler, S., & Martinovic, I. (2024). Current affairs: A measurement study of

deployment and security trends in EV charging infrastructure. arXiv preprint arXiv:2404.06635.

A threat analysis of the vehicle-to-grid charging protocol ISO 15118. (n.d.). Retrieved from

https://link.springer.com/article/10.1007/s00450-017-0342-y (Accessed: September 20, 2024).

International Organization for Standardization. (n.d.). ISO 15118-1: Road vehicles — Vehicle to

grid communication interface — Part 1: General information and use-case definition. Retrieved from

https://www.iso.org/standard/55365.html (Accessed: September 20, 2024).

https://www.nationalgeographic.com/news/2017/09/electriccars-replace-gasoline-engines-2040
https://www.nationalgeographic.com/news/2017/09/electriccars-replace-gasoline-engines-2040
https://link.springer.com/article/10.1007/s00450-017-0342-y

International Electrotechnical Commission. (n.d.). IEC 61851: Electric vehicle conductive charging

system. Retrieved from https://www.iec.ch/standards/iec61851 (Accessed: September 20, 2024).

International Organization for Standardization. (n.d.). ISO 15118-2: Road vehicles — Vehicle to

grid communication interface — Part 2: Network and application protocol requirements. Retrieved from

https://www.iso.org/standard/66975.html (Accessed: September 20, 2024).

International Organization for Standardization. (n.d.). ISO 15118-3: Road vehicles — Vehicle to

grid communication interface — Part 3: Physical and data link layer requirements. Retrieved from

https://www.iso.org/standard/69156.html (Accessed: September 20, 2024).

Samhocevar. (n.d.). Retrieved from https://github.com/samhocevar/zzuf (Accessed: September 20,

2024).

American fuzzy lop. (n.d.). Retrieved from https://lcamtuf.coredump.cx/afl/ (Accessed: September

20, 2024).

Zhang, X., He, L., Li, Y., Wang, J., & Liu, C. (2024). A survey of protocol fuzzing. arXiv preprint

arXiv:2401.01568.

Park, H., Kim, S., Kim, J., Lee, H., Kim, T., & Oh, H. (2022). L2Fuzz: Discovering Bluetooth

L2CAP vulnerabilities using stateful fuzz testing. In 2022 52nd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN) (pp. X-Y). IEEE.

Ren, M., He, L., Zhang, H., Huang, Y., & Li, C. (2021). Z-Fuzzer: Device-agnostic fuzzing of

Zigbee protocol implementation. In Proceedings of the 14th ACM Conference on Security and Privacy

in Wireless and Mobile Networks (pp. X-Y).

Feng, X., Zhang, J., Yu, Z., & Dong, M. (2021). Snipuzz: Black-box fuzzing of IoT firmware via

message snippet inference. In Proceedings of the 2021 ACM SIGSAC conference on computer and

communications security (pp. X-Y).

Schoneberger, T. (2023). FUZZ testing the ISO 15118 protocol stack. Vector Informatik GmbH.

Retrieved from

https://cdn.vector.com/cms/content/events/2021/vSES21/vSES21Slides07SchoenebergerVector.pdf

(Accessed: December 15, 2023).

Coppoletta, G. (2024). OCPPStorm: A comprehensive fuzzing tool for OCPP implementations

(Master's thesis). University of Illinois at Chicago.

IdahoLabResearch. (n.d.). Retrieved from https://github.com/IdahoLabResearch/AcCCS(Accessed:

September 20, 2024).

https://github.com/samhocevar/zzuf
https://lcamtuf.coredump.cx/afl/
https://github.com/IdahoLabResearch/AcCCS

