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Coinduction is an important concept in functional programming. To formally prove properties of
corecursive functions one can try to define them in a proof assistant such as Coq [1]. But there are
limitations on the functions that can be defined in this proof assistant. In particular, corecursive calls
must occur directly under a call to a constructor, without any calls to other recursive functions in
between. In this paper we show how a partially ordered set with certain extensions - approxima-
tions and definedness measures - can be organised as Complete Partial Orders endowed with the
same extensions. This makes it possible to define total corecursive functions without using Coq’s
corecursion, as unique solutions of fixpoint equations, thereby escaping Coq’s builtin limitations.

1 Introduction

Coinduction is an important concept in functional programming. Coinductive types are the types of
possibly infinite data structures such as the lists of Haskell, and corecursive functions compute values in
coinductive types. An example is the Sieve of Eratosthenes that produces the infinite stream of primes.

To formally define corecursive functions one can try to use a proof assistant such as Coq. But then
one quickly stumbles on the limitations of Coq on this matter. Indeed the language of this proof assistant
is total, meaning that a function must be defined on all its domain (which is not requested for functional
programming languages in general). Totality is ensured in Coq by a syntactical check of so-called guard-
edness. This criterion consists in checking that any corecursive call occurs directly under a call to a
constructor of the coinductive type that constitutes the codomain (a.k.a. range) of the function under def-
inition [6]. For example, Rose trees are coinductively defined as the constructor tree applied to a forest,
which is an inductively-defined list of Rose trees. A mirror function would be corecursively defined by
mirror t = tree(map mirror(reverse(forest t))), but this is rejected by Coq because the corecursive call is
not directly under the constructor tree, but under map, a recursive function defined on lists.

In a previous paper [9] we propose a method for defining such functions by replacing the syntactical
guardedness criterion by a semantical proof obligation of productiveness: for each input, an arbitrar-
ily close approximation of the corresponding output is eventually produced. When a functional (i.e.,
a higher-order function, which constitutes the “blueprint” of a corecursive function under definition) is
monotonic and satisfies the productiveness requirement, a corecursive function can be defined as the
unique fixpoint of the functional in question. This technique requires that the codomain of the func-
tion under definition be organized as a Omega-Complete Partial Order (ωCPO). For some coinductive
types such as streams or possibly infinite lists, the ωCPO can be directly defined using Coq’s builtin
mechanisms, and particular corecursive functions, which do not admit a direct definition in Coq, can be
indirectly defined as instances of limits of sequences of approximating functions in the ωCPO in ques-
tion. But, being nonetheless based on Coq’s builtin coinduction features, the ωCPO construction does
not work for all coinductive types. In particular, for mixed inductive-coinductve types such as Rose trees
the construction of limits in the corresponding ωCPO is rejected by Coq as unguarded. The solution we
proposed in [9] is to replace the construction ofωCPOs of coinductive types by a completion mechanism,
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by which inductive types are completed with equivalence classes of “ascending” sequences of elements
in inductive types, which are limits for the sequences in question and play the role of corecursive values.

However, the construction we ended up with in [9] imposes some not-so-practical conditions. The
order had to be weakly total, thus excluding the natural order induced by the constructors of the induc-
tive types. Although we were able to exhibit a weakly total order for the particular case of Rose tees,
the constructor tree is not monotonic w.r.t. this order. As a consequence, functionals that employ this
constructor are not monotonic either, which excludes them for being used in fixpoint equations for the
definition of corecursive functions. For example, the mirror function cannot be defined in the natural
manner, as a fixpoint of the functional Mirror = λ f .λt. tree(map f (reverse(forest t))), but in an indirect
way that makes it harder to prove that the obtained function is indeed the intended one.

Contributions. In this paper we replace the weak totality condition on partial orders by a notion of
approximation of a given precision meeting some quite natural conditions. These conditions are easier
to satisfy than the (comparatively arbitrary) weak totality. We illustrate with the example of finite trees
that the natural (i.e. structural) order on inductive types — quite importantly, this is the least constrained
order under which constructors are monotonic — does satisfy the conditions on approximations whereas
it did not satisfy weak totality. We then describe the construction of an ωCPO under the said conditions.
This construction is substantially more involved than that in [9], but has to be done only once and can
then be instantiated on any inductive type with an adequate notion of approximation in order to generate
coinductive types. For Rose trees, the effect of the new construction is that the tree constructor is now
monotonic w.r.t. their natural prefix order. By further eriching the ωCPOs with aapproximations with a
measure of “definedness” (inherited from a definedness measure on partial orders with approximations) it
becomes to define total corecursive functions (i.e., functions that return “total” values) in the most natural
manner, as the unique solution of the fixpoint equation induced by a monotonic, productive functional of
the function. We also give practical sufficient conditions ensuring the productiveness requirement.

Outline. Section 2 presents preliminary notions. These include the definition of ωCPOs and a recapp
of results from [9] that enable the definition of total corecursive functions as unique fixpoints of certain
“productive” functionals involving ωCPOs. We then introduce an abstract notion of approximations of
a given precision and some assumptions over them. We show that the assumptions have a model - finite
trees with their natural prefix order and a “cut” function. Some technical developments are also included.

Section 3 defines the completion operation that produces an ωCPO from a a partially ordered set with
a least element. Completion is done in several steps: first, one completes an initial set of “finite” ele-
ments with new elements that are equivalence classes of ascending sequences of finite elements, thereby
providing such sequences with “limits” (least upper bounds) required by ωCPOs. Second, the order and
approximations are extended to the new elements. Third, we show using a “diagonalization” technique
that ascending sequences of both old and new elements have limits among the new elements, meaning
that the construction of the ωCPO does not require further completion steps.

In Section 4 we give practically usable sufficient conditions for proving the productiveness of func-
tionals, which is required for defining total corecursive functions as unique fixpoints of those functionals.
A special attention is given to maximal elements in the underlying ωCPO. These are shown to coincide
with total coinductive values - the values that a total corecursive function can return. Total values are
characterized by having a “definedness” equal to infinity, according to a definedness measure, which we
assume on the underlying partial order and its approximations and extend to the ωCPO.

Section 5 applies completion to produce Rose trees from finite trees. The whole approach is in-
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stantiated in Section 6 by defiing the mirror function as the unique fixpoint of its functional, whose
productiveness is proved by using the sufficient conditions in the previous section.

Section 7 concludes and presents related and future work. This paper will be formalized in Coq, but
we keep it language-agnostic and use standard mathematics for better readability.

2 Preliminaries

2.1 Sequences and Complete Partial Orders

Definition 1 Consider a set C and a partial order ⪯ on C. We denote by ≺ the relation defined by t ≺ t′

iff t ⪯ t′ and t , t′. A sequence (si)i∈N of elements of C is
• increasing whenever for all i ∈ N, si ⪯ si+1;

• strictly increasing, whenever for all i ∈ N, si ≺ si+1;

• stabilizing to c ∈ C whenever there exist m ∈ N such that for all i ≥ m, si = c, and stabilizing
whenever it is stabilizing to some c ∈C;

• ascending whenever it is increasing and non-stabilizing.

Remark. A sequence is ascending iff it is increasing and has a strictly increasing subsequence, and each
increasing and stabilizing sequence is stabilizing to a unique value.

Definition 2 An ω-Complete Partial Order (ωCPO) is a tuple (C,⪯,⊥), where ⪯ is a partial order on C,
⊥ is the least element for ⪯, and such that each increasing sequence (sn)n∈N over C has a least upper
bound.
Hereafter we call least upper bounds limits and denote the limit of a sequence (sn)n∈N by limL(sn)n∈NM.

Remark. An important feature of ωCPOs is that the order ⪯ should be interpreted as a definition order.
In this sense, ⊥ is the least defined element, and elements that are maximal with respect to the order
are interpreted as are “totally defined”. Intermediate, non-maximal elements are therefore “partially
defined”. In this paper we are interested in defining total corecursive functions, which only return totally
defined values. Such values play an important role in the rest of the paper.

We now recapp some results from [9] that enable the definition of total corecursive functions as
unique fixpoints of “productive” functionals.

Assume an ωCPO (C,⪯,⊥). We extend ⪯ to functions D→C by f1 ⪯ f2 iff f1 x ⪯ f2 x for all x ∈ D.

Definition 3 A functional F : (D→ C)→ D→ C is increasing if for all f1, f2 : D→ C, f1 ⪯ f2 implies
F f1 ⪯ F f2.

Consider a functional F : (D→ C)→ D→ C as above. Let y : D→ C be the constant function
such that y x = ⊥, for all x ∈ D, and let Fn : (D→C)→ D→C be the functional inductively defined by
F0 f = f and, for all n ∈ N, Fn+1 f = F(Fn f ).
Definition 4 A functional F : (D→ C)→ D→ C is productive whenever it is increasing and for all
x ∈ D, the limit of the (increasing) sequence (Fny x)n∈N is maximal w.r.t. the order ⪯.

Remark. The relationship between the productiveness of a functional and the informal notion of pro-
ductiveness for corecursive functions is established in [9].
Theorem 1 ([9]) If a functional F is productive then limL(Fny)n∈NM is the unique fixpoint of F.

Remark. Hence, in order to define a total function one needs to (1) organize the codomain C of the
function as an ωCPO; (2) prove that the functional of the function in question is productive.
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2.2 Partially Ordered Sets with Least Elements and Quantified Approximations

Assumption 1 In the sequel we assume:

1. a partially ordered set (C◦,⪯◦) with a least element ⊥. Elements of C◦ are often called finite. It is
required that no finite element be an upper bound for an ascending sequence of finite elements;

2. for each N ∈ N, an approximation function V·WN : C◦ → C◦. For any c ∈ C◦, VcWN is called thee
approximation of c having precision N, and satisfies the following properties:

(a) for all c ∈C◦ and N ∈ N, VcWN ⪯◦ c;
(b) for all c,c′ ∈C◦ and N ∈ N, c ⪯ c′ implies VcWN ⪯◦ Vc′WN;
(c) for all c ∈C◦ and N,N′ ∈ N, N ≤ N′ implies VcWN ⪯◦ VcWN′;
(d) for all c ∈C◦ there exists N ∈ N such that VcWN = c;
(e) for all c ∈C◦ and N,N′ ∈ N, N ≤ N′ implies VVcWN′WN = VcWN;

3. for any N ∈ N and any ascending sequence (sn)n∈N, (VsnWN)n∈N is stabilizing.

Remark. The requirements in Assumption 1 are quite natural. Item 1 holds if finite elements have
finitely many finite elements smaller than them, a property which may be expected from finite elements.
Item 2.(a) says that approximations do approximate w.r.t. the precision, items 2.(b) and 2.(c) says that ap-
proximations are monotonic in both arguments; item 2.(d) says that for finite elements approximation can
be exact, and item 2.(e) says that approximating first at some precision N′ ≥ N and then approximating at
precision N amounts to approximating at precision N. Finally, item 3 says that mapping approximations
to ascending sequences makes them stabilize - the sequence of approximations cannot grow forever.

Example 1 (model for Assumption 1) Let C◦ be the set of trees inductively defined by the rules ⊥ ∈C◦

and for each list l over T , tree◦ l ∈ T. Let ⪯◦ be the prefix relation on C◦, inductively defined by ⊥ ⪯◦ t
for each t ∈ C◦, and, for every pair of lists l, l′ over T having the same length, say, m, tree◦ l ⪯◦ tree◦ l′

whenever l[i] ⪯◦ l′[i] for each i < m (where l[i] denotes the i-th element of the list l). Let V·WN (“cut
at height N”) denote the function λ t. if N = 0∨ t = ⊥ then ⊥ else tree◦(map(V·WN−1)(forest◦ t)) where
forest◦(tree◦ l) ≜ l and map is the mapping function on lists. We have proved in Coq that Assumption 1
holds for these definitions. The code is available at https://project.inria.fr/wpte2022/ .

The ⪯◦ order and the approximation V·WN at precision N ∈ N can equivalently defined by rewriting,
which will be useful ahead in the paper. We thus recall some notions about rewriting. A position is
a string over N, with an associative concatenation operation · having the empty string ϵ as neutral
element. The set of all positions is denoted N∗. Given a tree t, the set π t of positions of t is inductively
defined by π ⊥ = {ϵ} and π(tree◦[t0, · · · , tn−1]) =

⋃n−1
i=0 (π ti) ∪

⋃n−1
i=0
⋃

p∈(π ti){i · p}. For t a tree and
p ∈ π ti, the subtree t|p of t at position p is defined by t|ϵ := t and, for all 0 ≤ i < n and p ∈ (π ti),
(tree◦[t0, · · · , tn−1])|(i · p) := (ti)|p. A position p ∈ π t is a ⊥-position whenever t|p = ⊥. The substutition
t[t′]|p of a tree t′ at a position p of a tree t is inductively defined by t[t′]|ϵ = t′ and, for all 0 ≤ i < n and
p ∈ (π ti), (tree[t0, . . . , ti, . . . , tn−1])t′]|(i · p) = tree◦[t1, . . . , ti[t′]|p, . . . , tn−1]. The rewriting relation is defined
as follows: two trees t, t′ are in the relation if there exists a ⊥-position p ∈ π t and a tree t′′ such that
t′ = t[t′′]|p. Then, we prove that the ⪯◦ order is the reflexive-transitive closure of the rewriting relation;
and the approximation VtWN can be defined as substituting t|p with ⊥ at all positions of length N in t.

Another observation that will be useful ahead in the paper is related to independent positions: two
positions p, p′ ∈ N∗ are independent if none of them is a prefix of the other one. Given trees t, t1, t2 and
two independent positions p1, p2 ∈ π t the following equality holds: (t[t1]|p1)[t2]|p2 = (t[t2]|p2)[t1]|p1 , that
is, the substitutions of t1, t2 in t at the independent positions p1, p2 can be done in any order.

https://project.inria.fr/wpte2022/
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Refinements of trees as defined in Example 1 include, e.g., terms built over many-sorted first-order
signatures and variations thereof [3], providing us with a rich set of examples satisfying the assumptions
required for “completing” them to infinite terms and defining corecursive functions over them.

We now proceed with a some technical developments required for the completion operation. The
presentation is independent of any model of Assumption 1, hence, it works for all such models.

Remark. Assumption 1 item 2.(b) implies that for increasing sequences (sn)n∈N, the sequence (VsnWN)n∈N

is increasing. Hence, for ascending sequences (sn)n∈N the sequence (VsnWN)n∈N is increasing and stabiliz-
ing (cf. Item 3 of the Assumption) and therefore has a limit: the value at which the sequence stabilizes.

Lemma 1 Assume two increasing and stabilizing sequences (sn)n∈N, (s′n)n∈N over C◦, such that for all
n ∈ N, sn ⪯

◦ s′n. Then limL(sn)n∈NM ⪯◦ limL(s′n)n∈NM.

Proof. Per the above observations, limL(sn)n∈NM is the value at which (sn)n∈N stabilizes, hence, there
exists i ∈ N such that for all j ≥ i, s j = limL(sn)n∈NM. Similarly, there exists i′ ∈ N such that for all j ≥ i′,
s′j = limL(s′n)n∈NM. Set i′′ := max i i′. Then, limL(sn)n∈NM = si′′ ; by hypothesis of the lemma si′′ ⪯

◦ s′i′′
holds; and si′′ = limL(s′n)n∈NM. By transitivity, limL(sn)n∈NM ⪯◦ limL(s′n)n∈NM, which proves the lemma.

Another consequence of Assumption 1 is the following lemma.

Lemma 2 For all c ∈C◦ there exists N ∈ N such that for all N′ ≥ N, VcWN′ = c.

Proof. N such that VcWN = c exists by Assumption 1 item 2.(d). Consider any N′ ≥ N. We have c = VcWN

by item 2.(d), hence, c ⪯◦ VcWN′ using item 2.(c), and VcWN′ ⪯⪯ c by item 2.(a). Using the antisymmetry
of the ⪯◦ relation we obtain that for the arbitrarily chosen N′ ≥ N, VcWN′ = c, which proves the lemma.

2.3 An Equivalence Relation on Sequences

Similar sequences eventually reach elements that are pairwise equal up to arbitrary close approximations:

Definition 5 Two sequences (sn)n∈N, (s′n)n∈N over C◦ are similar, written (sn)n∈N ∼ (s′n)n∈N, whenever for
all N ∈ N there exists i ∈ N such that for all j ≥ i, Vs jWN = Vs′jW

N .

Lemma 3 The similarity relation ∼ is an equivalence relation on sequences over C◦.

Proof. Reflexivity and symmetry are immediate. For transitivity, assume (sn)n∈N ∼ (s′n)n∈N and (s′n)n∈N ∼

(s′′n )n∈N. Choose any N ∈ N. From (sn)n∈N ∼ (s′n)n∈N we obtain i ∈ N such that for all j ≥ i, Vs jWN =

Vs′jW
N , and from (s′n)n∈N ∼ (s′′n )n∈N we obtain i′ ∈ N such that for all j ≥ i′, Vs′jW

N = Vs′′j W
N . Setting

i′′ := max i i′ we get: for all j ≥ i′′, Vs jWN = Vs′jW
N = Vs′′j W

N ; which proves (sn)n∈N ∼ (s′′n )n∈N and
establishes transitivity.

Lemma 4 For an increasing sequence (sn)n∈N, let s be the (unique) value at which (VsnWN)n∈N stabilizes.
If (sn)n∈N ∼ (s′n)n∈N then (Vs′nWN)n∈N also stabilizes at s.

Proof. From the stabilization hypothesis we obtain i ∈N such that for all j≥ i, Vs jWN = s. From (sn)n∈N ∼

(s′n)n∈N we obtain i′ such that for all j ≥ i′, Vs jWN = Vs′jW
N . Setting i′′ := max i i′ we obtain that for all

j ≥ i′′, Vs′jW
N = Vs jWN = s. Hence, (Vs′nWN)n∈N stabilizes at s; which proves the lemma.

Lemma 4 helps defining approximations of equivalence classes V[(sn)n∈N]∼WN of ascending sequences:

Definition 6 For any ascending sequence over C◦, V[(sn)n∈N]∼WN = limL(VsnWN)n∈NM.

Indeed, Lemma 4 says that the above definition is independent on the chosen representative in the class.
This is essential in the rest of the paper. Unless otherwise stated, sequences are assumed to be over C◦.
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Lemma 5 For ascending sequences (sn)n∈N and (s′n)n∈N it holds that (sn)n∈N ∼ (s′n)n∈N if and only if for
all N ∈ N, V[(sn)n∈N]∼WN = V[(s′n)n∈N]∼WN .

Proof. (⇒): per the above remarks, V[(sn)n∈N]∼WN = limL(VsnWN)n∈NM and V[(s′n)n∈N]∼WN = limL(Vs′nWN)n∈NM.
If (sn)n∈N ∼ (s′n)n∈N we know by Lemma 4 that the value limL(VsnWN)n∈NM at which (VsnWN)n∈N stabilizes
equals the value limL(Vs′nWN)n∈NM at which (Vs′nWN)n∈N stabilizes. Hence, V[(sn)n∈N]∼WN = V[(s′n)n∈N]∼WN .

(⇐) : Choose an arbitrary N ∈ N. Per the above remarks, from the hypothesis V[(sn)n∈N]∼WN =

V[(s′n)n∈N]∼WN we obtain that the value limL(VsnWN)n∈NM at which V(sn)n∈NWN stabilizes equals the value
limL(Vs′nWN)n∈NM at which V(s′n)n∈NWN stabilizes. Let i be the least natural number such that for all
j ≥ i, Vs jWN = limL(VsnWN)n∈NM and let i′ be the least natural number such that for all j ≥ i′, Vs′jW

N =

limL(Vs′nWN)n∈NM. Set i′′ := max i i′. Hence, for all j ≥ i′′,Vs jWN = Vs′jW
N and since N was chosen

arbitrarily, by Definition 5, (sn)n∈N ∼ (s′n)n∈N; which proves the (⇐) implication and the lemma.

2.4 An Order Relation on Equivalence Classes of Sequences

Notation. We denote by K the set of equivalence classes of ascending sequences of elements in C◦.

Definition 7 For k,k′ ∈ K, k ≾ k′ whenever for all N ∈ N, VkWN ⪯◦ Vk′WN .

Lemma 6 The relation ≾ is a partial order on K.

Proof. Reflexivity and transitivity of ≾ easily result from the corresponding properties of ⪯◦. For anti-
symmetry: let k = [(sn)n∈N]∼ and k′ = [(s′n)n∈N]∼. Then, k ≾ k′ means that for all N ∈N, V[(sn)n∈N]∼WN ⪯◦

V[(s′n)n∈N]∼WN , and k′ ≾ k means that for all N ∈ N, V[(s′n)n∈N]∼WN ⪯◦ V[(sn)n∈N]∼WN . As ⪯◦ is an-
tisymmetric, for all N ∈ N, V[(sn)n∈N]∼WN = V[(s′n)n∈N]∼WN , and by Lemma 5, (sn)n∈N ∼ (s′n)n∈N, i.e.,
[(sn)n∈N]∼ = [(s′n)n∈N]∼: the lemma is proved.

We give an equivalent characterization of the order ≾, expressed as Lemma 8 below. To prove that lemma
we need the monotonicity of approximations of equivalence classes:

Lemma 7 If k ∈ K and N ≤ N′ then VkWN ⪯◦ VkWN′ .

Proof. Let k = [(sn)n∈N]∼, thus, VkWN = lim[(VsnWN)n∈N] and VkWN′ = lim[(VsnWN′)n∈N]. Using As-
sumption 1 item 2.(c), for all n ∈ N, VsnWN ⪯◦ VsnWN′ . By Lemma 1 we obtain lim[(VsnWN)n∈N] ⪯◦

lim[(VsnWN′)n∈N]. Hence the conclusion VkWN ⪯◦ VkWN′ .

Lemma 8 k ≾ k′ if and only if for all N ∈ N there is N′ ∈ N such that VkWN ⪯◦ Vk′WN′ .

Proof. (⇒): this direction is trivial, as by Definition 7 k ≾ k′ means that for all N ∈ N there does exist
N′ := N such that VkWN ⪯◦ Vk′WN′ .

(⇐): Choose an arbitrary N ∈ N. For the corresponding N′ ∈ N we have two cases:

• either N′ < N, in which case by Lemma 7, Vk′WN′ ⪯◦ Vk′WN and by transitivity using hypothesis
VkWN ⪯◦ Vk′WN′ we obtain VkWN ⪯◦ Vk′WN ;

• or N ≥ N′, and from VkWN ⪯◦ Vk′WN′ , using Assumption 1 item 2.(b) we obtain VVkWNWN ⪯◦

VVk′WN′WN , which, by using item 2.(e), amounts to VkWN ⪯◦ Vk′WN .

Since N ∈N has been arbitrarily chosen and in all cases VkWN ⪯◦ Vk′WN , by Definition 7 we obtain k ≾ k′,
which proves the (⇐) implication and the lemma.
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3 Completion

We show how a partially ordered set with a least element (C◦,⪯◦,⊥) satisfying Assumption 1 can be
completed in order to obtain an ωCPO (C,⪯,⊥). We have already noted that increasing and stabilizing
sequences have limits. Hence, limits have to be constructed for the ascending sequences.

Definition 8 Given a triple (C◦,⪯◦,⊥) satisfying Assumption 1, the completion operation consists in

1. extending the base set C◦ to a set C = C◦∪K where K is the set of equivalence classes [(sn)n∈N]∼
of ascending sequences over C◦;

2. defining the limits of each ascending sequence (sn)n∈N over C◦ to be the equivalence class of the
sequence: limL(sn)n∈NM ≜ [(sn)n∈N]∼.

3. extending the order ⪯◦ on C◦ to a relation ⪯ on C as follows:

(a) for c,c′ ∈C◦, c ⪯ c whenever c ⪯◦ c′;
(b) for c ∈C and k ∈ K, c ⪯ k whenever there exists N ∈ N such that c ⪯◦ VkWN;
(c) for k,k′ ∈ K, k ⪯ k′ whenever k ≾ k′.

Remark. Definition 8 says nothing about limits of increasing sequences containing elements that are
themselves limits (from K). Such sequences are dealt with ahead in the paper and shown to have limits
among the new elements. Hence, the ωCPO construction does not require further completion steps.

A key difference with the earlier completion operation in [9] is that equivalence classes there were
all maximal with respect to the order; this was required in order to exclude limit elements (in K) from
occurring in ascending sequences. In the new construction, limit elements are not excluded any more
from ascending sequences, which enables us to have a nontrivial order on K, in which maximal elements
are seen as “totally defined”, but in which “partially defined”, non-maximal limit elements also exist.

We now show that the relation ⪯ is an order and that the constructed limits are least upper bounds of
the respective sequences. This is then used in the next subsection in order to provide limits to sequences
that include both finite elements and equivalence classes, and to prove that those limits are least upper
bounds as well, thereby completing the organization of old and new elements and their order as anωCPO.

Lemma 9 In the context of Definition 8, the relation ⪯ is an order relation on C.

Proof. The reflexivity of ⪯ follows from those of ⪯◦ and of ≾. For antisymmetry: on C◦ it follows from
the antisymmetry of ⪯◦. On K, it follows from the antisymmetry of ≾. These are the only situations to
consider, as for c ∈C◦ and k ∈ K having k ⪯ c is impossible according to Definition 8.

There remains to prove that ⪯ is transitive. There are only 4 possible cases:

1. c,c′,c′′ ∈ C◦ with c ⪯ c′, c′ ⪯ c′′: by Definition 8 of completion item 3.(a), here ⪯ is ⪯◦ and the
required c ⪯ c′′ results from the transitivity of ⪯◦;

2. c,c′ ∈C◦ and k ∈ K with c ⪯ c′ and c′ ⪯ k: by Definition 8 item 3.(b), the latter means there exists
N ∈ N such that c′ ⪯◦ VkWN , and since c ⪯ c′, the same N ensures c ⪯◦ VkWN and thus c ⪯ k;

3. c ∈ C◦ and k,k′ ∈ K with c ⪯ k and k ⪯ k′: by Definition 8 item 3.(b), there exists N ∈ N such that
c ⪯◦ VkWN , and by Definition 7 and item 3.(c), VkWN ⪯◦ Vk′WN , thus, by transitivity, there exists
N ∈ N such that c ⪯◦ Vk′WN , meaning that c ⪯ k′;

4. k,k′,k′′ ∈ K with k ⪯ k′ and k′ ⪯ k′′ : by Definition 8 item 3.(c), here ⪯ is ≾ and the required k ⪯ k′′

results from the transitivity of ≾. This concludes the proof of transitivity for ⪯ and of the lemma
as a whole.
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Lemma 10 In the context of Definition 8, the limit lim[(sn)n∈N] of an ascending sequence (sn)n∈N over
C◦ is a least upper bound for (sn)n∈N.

Proof. By Definition 8, given an ascending sequence (sn)n∈N, it limit lim[(sn)n∈N] is defined to be the
equivalence class [(sn)n∈N]∼ of the sequence.

We first prove that [(sn)n∈N]∼ is an upper bound for the sequence (sn)n∈N. That is, we must prove that
for all n ∈N, sn ⪯ [(sn)n∈N]∼. Choose an arbitrary n ∈N, and choose N such that VsnWN = sn. This is made
possible by Assumption 1 item 2.(d). We then have sn = VsnWN ⪯◦ limL(VsnWN)n∈NM = V[(sn)n∈N]∼WN .
Hence, sn ⪯

◦ V[(sn)n∈N]∼WN and, by Definition 8 item 3.(b), sn ⪯ [(sn)n∈N]∼. The upper-bound claim of
[(sn)n∈N]∼ with respect to (sn)n∈N is proved.

We now prove that [(sn)n∈N]∼ is the least upper bound of (sn)n∈N. Assume b ∈ C such that for all
n ∈ N, sn ⪯ b. There are two cases to consider: b ∈C◦ or b ∈ K. If b ∈C◦ then for all n ∈ N, sn ⪯

◦ b. But
this is impossible by Assumption 1 item 1 since (sn)n∈N is ascending.

If b ∈ K, then b = [(s′n)n∈N]∼ for some ascending sequence (s′n)n∈N. From the fact that for all n ∈ N,
sn ⪯ [(s′n)n∈N]∼, using Assumption 1 item 2.(b) we obtain that for all n ∈ N, there is N′ ∈ N such that
sn ⪯

◦ V[(s′n)n∈N]∼WN′ . Choose an arbitrary N ∈ N. Since for all n ∈ N, VsnWN ⪯◦ sn we further obtain that
for all n ∈ N there exists N′ ∈ N such that VsnWN ⪯◦ V[(s′n)n∈N]∼WN′ . Now, the sequence (VsnWN)n∈N is
increasing and stabilizing, and limL(VsnWN)n∈NM is an element, say, VskWN of the sequence. We thus obtain
that for the arbitrarily chosen N ∈ N, there exists N′ ∈ N such that limL(VsnWN)n∈NM ⪯◦ V[(s′n)n∈N]∼WN′ .
Moreover, we know that limL(VsnWN)n∈NM = V[(sn)n∈N]∼WN . We thus obtain that for all N ∈N, there exists
N′ ∈N such that V[(sn)n∈N]∼WN ⪯◦ V[(s′n)n∈N]∼WN′ . By Lemma 8 we obtain [(sn)n∈N]∼ ≾ [(s′n)n∈N]∼. Then,
by Definition 8 item 3.(c), [(sn)n∈N]∼ ⪯ [(s′n)n∈N]∼ = b. Thus, in the only possible case (b ∈ K) we have
obtained that [(sn)n∈N]∼ is ⪯-ordered with b. This concludes the proof of the lemma.

3.1 Completion + Diagonalization = ωCPO

In this section we show how to “finish” the completion operation in the previous section in order to obtain
an ωCPO. We add what is missing: limits for ascending sequences that include equivalence classes. The
main idea is to use a diagonalization technique to extract an ascending sequence of finite elements from
an ascending sequence that includes equivalence classes. We need a few technical lemmas. The first
lemma adapts Assumption 1 items 2.(a)-(c), which hold for elements of C◦, to the elements of K.

Lemma 11

1. for all k ∈ K and N ∈ N, VkWN ⪯ k;

2. for all k,k′ ∈ K and N ∈ N, k ⪯ k′ implies VkWN ⪯ Vk′WN;

3. for all k ∈ K and N,N′ ∈ N, N ≤ N′ implies VkWN ⪯ VkWN′ .

Proof.

1. The approximation VkWN is an element of C◦, hence, by Definition 8 item 3.(b), for VkWN ⪯ k it is
enough to show that there exists N′ ∈ N such that VkWN ⪯ VkWN′ . Setting N′ := N ensures this;

2. By Definition 8 item 3.(c), k ⪯ k′ is just k ≾ k′, which by Definition 7 is just the conclusion of this
item - that for all N ∈ N, VkWN ⪯ Vk′WN ;

3. Both VkWN and VkWN′ are elements of C◦, thus, ⪯ = ⪯◦, and the conclusion follows by Lemma 7.

The next lemma establishes that ascending sequences are similar to any of their subsequences.
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Lemma 12 Consider an ascending sequence (sn)n∈N and a subsequence (s(φ n))n∈N of it, for some strictly
increasing φ : N→ N. Then (sn)n∈N ∼ (s(φ n))n∈N.

Proof. As a subsequence of an ascending sequence, (s(φ n))n∈N is ascending. Let k = [(sn)n∈N]∼ and
k′ = [(s(φ n))n∈N]∼. We observe that, by Lemma 8, showing k = k′ is equivalent to finding, for each
N ∈ N, some N′ ∈ N such that VkWN = Vk′WN′ . Let N′ := N. Using Definition 6, we have to show that
limL(VsnWN)n∈NM = limL(Vs(φ n)WN)n∈NM. Let n0 be the least natural number such that limL(VsnWN)n∈NM =
Vsn0WN , and let n1 ∈ N be such that limL(Vs(φ n)WN)n∈NM = Vsn1WN . n1 < n0 contradicts the minimality
of n0, hence, n1 ≥ n0, which implies limL(VsnWN)n∈NM = Vsn1WN = limL(Vs(φ n)WN)n∈NM and proves the
lemma.

We next introduce a notion of “diagonalization” for an equivalence class of ascending sequences.

Definition 9 For k ∈ K, the sequence (VkWn)n∈N is called the diagonal of k.

The main interest of diagonalization is that it gives a “canonical” representative for the class.

Lemma 13 For all k ∈ K, the sequence (VkWn)n∈N is ascending, and limL(VkWn)n∈NM = k.

Proof. We first prove the following technical result about ascending sequences: (†) if (sm)m∈N is an
ascending sequence, then for all j,n ∈ N there exist j′ > n,n′ > n such that Vs jWn ≺◦ Vs j′Wn′ .

Proof of (†): there exists j′ > k such that s j ≺
◦ s j′ . Moreover, for large enough n′ (in particular,

n′ > Nn) Vs j′Wn′ = s′j′ (by Assumption 1, items 2(d)(c)(a)). Hence, Vs jWn ⪯◦ s j ≺
◦ s′j′ = Vs j′Wn′ , i.e., (†).

We now prove that (VkWn)n∈N is ascending. By Lemma 11 item 3 it is increasing. Choose an as-
cending sequence (sn)n∈N ∈ k. Fix an arbitrary n ∈ N. It holds that VkWn = limL(VsmWn)m∈NM. Now,
limL(VsmWn)m∈NM = Vs jWn for some j ∈ N. Using (†) there exists j′ > j and n′ > n such that Vs jWn ≺◦

Vs j′Wn′ . But Vs j′Wn′ ⪯◦ limL(VsmWn′)m∈NM. Overall, for the arbitrarily chosen n ∈ N, there exists n′ > n
such that VkWn = limL(VsmWn)m∈NM ≺◦ limL(VsmWn′)m∈NM = VkWn′ , which proves that (VkWn)n∈N is ascend-
ing.

Finally, we prove that limL(VkWn)n∈NM = k, i.e., k is the least upper bound of (VkWn)n∈N. By Lemma 11
item 1, k is an upper bound of (VkWn)n∈N. We now prove it is the least upper bound. For, assuming an
upper bound k′ ∈ C◦∪K, from Assumption 1 item 1 and the ascending property of (VkWn)n∈N we know
that k′ ∈ C◦ is impossible, hence, k′ ∈ K. Now, since k′ is an upper bound, for all n ∈ N, VkWn ≾ k′.
Choose an arbitrary n ∈ N. Since VkWn ∈ C◦ and k′ ∈ K, by Definition 8 item 3 (b), there exists n′ ∈ N
such that VkWn ⪯◦ VkWn′ . By Lemma 8 we obtain k ≾ k′, which shows limL(VkWn)n∈NM = k and completes
the proof.

Notation. For equivalence classes k,k′ ∈ K we write k ≺ k′ for k ≾ k′ and k , k′. We denote by Cω the
set of sequences over a set C. We also call diagonal of s ∈ (C◦∪K)ω the sequence (VsnWn)n∈N ∈ (C◦)ω.

Lemma 14 If s ∈ (C◦∪K)ω is increasing, the sequence (VsnWn)n∈N ∈ (C◦)ω is increasing as well.

Proof. Any two consecutive elements Vsi−1Wi−1 and VsiWi satisfy Vsi−1Wi−1 ⪯ VsiWi by Lemma 11 items
2&3.

Lemma 15 For all k,k′ ∈ K, k ≺ k′ implies that there exists j ∈N such that for all j′ ≥ j, VkW j′ ≺◦ Vk′W j′ .

Proof. k ≺ k′ implies in particular k ≾ k′. Assuming the negation of the conclusion, for each j ∈ N
there exists j′ > j such that VkW j′ ⊀◦ Vk′W j′ . But k ≾ k′ implies VkW j′ ⪯◦ Vk′W j′ , hence, for each j ∈ N
there exists j′ > j such that VkW j′ = Vk′W j′ , which means that there exists a strictly increasing function
φ :N→N such that for all j ∈N, VkW(φ j) = Vk′W(φ j), i.e., (VkW(φ j)) j∈N = (Vk′W(φ j)) j∈N. But (VkW(φ j)) j∈N
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is a subsequence of the diagonal (VkW j) j∈N of k, an ascending sequence according to Lemma 13, hence,
by Lemma12, (VkW j) j∈N ∼ (VkW(φ j)) j∈N, and, again using Lemma 13, k = limL(VkW(φ j)) j∈NM. Similarly,
k′ = limL(Vk′W(φ j)) j∈NM, i.e., k = k′, in contradiction with the hypothesis k ≺ k′. The contradiction arises
from negating the conclusion of the lemma, hence, the lemma is proved.

Lemma 16 Consider a strictly increasing sequence (kn)n∈N ∈ Kω. Then (VknWn)n∈N ∈ (C◦)ω is ascending.

Proof. We build by induction a strictly increasing subsequence (VkinWin)n∈N of (VknWn)n∈N. For the base
case the subsequence is Vk0W0. Assume now the subsequence of interest has been built up to a given
length, hence, its last element is of the form Vki jWi j . We have, by the strictly increasing nature of (kn)n∈N,
ki j ≺ ki j+1, hence, using Lemma 11 item 1, Vki jWi j ≺ ki j+1. Using Lemma 15 and Assumption 1 items
2.(d) and 2.(c), we can find a i′ > i j + 1 which is large enough to ensure VVki jWi jWi′ = Vki jWi j , such that
VVki jWi jWi′ ≺◦ Vki j+1Wi′ . Since i′ > i j+1, by monotonicity of (kn)n∈N, we obtain using Lemma 11 item 2,
Vki j+1Wi′ ⪯ Vki′Wi′ , i.e., Vki j+1Wi′ ⪯◦ Vki′Wi′ since the elements being compared are in C◦. Hence, we have
obtained i′ > i j such that Vki jWi j ≺◦ Vki′Wi′ , and therefore have built the strictly increasing subsequence
of interest up to length j+ 1. An infinite strictly increasing subsequence (VkinWin)n∈N of (VknWn)n∈N is
(obviously) defined as soon as all its elements are defined. In order to define its j-th element, we build
the finite strictly increasing subsequence by induction as above up to length j and take its last element.

Lemma 17 If s ∈ (C◦∪K)ω is ascending and there is i ∈N such that si ∈ K, then (VsnWn)n∈N is ascending.

Proof. By Lemma 14 the sequence (VsnWn)n∈N is increasing. We only need to prove that it has a strictly
ascending subsequence. Since s is ascending it has a strictly increasing subsequence (sin)n∈N. Since si ∈

K, we obtain that for all j ≥ i, s j ∈ K. Consider the subsequence (sin)n∈N,in≥i of (sin)n∈N. As a subsequence
of a strictly increasing subsequence, (sin)n∈N,in≥i is a strictly increasing sequence, and belongs to Kω.
We apply Lemma 16 to it and get an ascending subsequence of (sin)n∈N,in≥i, which by transitivity of the
subsequence relation is also an ascending subsequence of the original sequence s in the hypothesis.

The last lemma in this section provides limits to sequences s ∈ (C◦∪K)ω with at least one element in K.

Lemma 18 If s ∈ (C◦∪K)ω is ascending and si ∈ K, then [(VsnWn)n∈N]∼ is the least upper bound for s.

Proof. We first prove that [(VsnWn)n∈N]∼ is an upper bound for s. Thus, we need to show that for all j ∈N,
s j ⪯ [(VsnWn)n∈N]∼. Since s is increasing, it is enough to show the above inequality for j ≥ i, i.e., when
s j ∈ K. By Lemma 8 we only need to show (†): for all N ∈ N, there exists N′ ∈ N such that Vs jWN ⪯◦

V[(VsnWn)n∈N]∼WN′ . Choose an arbitrary N ∈ N. Let p = max j N. Thus, by Assumption 1 item 2.(b),
Vs jWN ⪯◦ VspWN . Using Assumption 1 item 2.(c), VspWN ⪯◦ VspWp. By transitivity, Vs jWN ⪯◦ VspWp. But
since (by Lemma 17) (VsnWn)n∈N is ascending, we know by Lemma 10 that [(VsnWn)n∈N]∼ is an upper
bound for (VsnWn)n∈N. In particular, VspWp ⪯◦ [(VsnWn)n∈N]∼, and by transitivity, Vs jWN ⪯◦ [(VsnWn)n∈N]∼,
which by Def. 8 item 3.(b) implies that there is N′ ∈ N such that Vs jWN ⪯◦ V[(VsnWn)n∈N]∼WN′ , i.e., (†).

We now prove that [(VsnWn)n∈N]∼ is a least upper bound for s. Thus, assuming an upper bound
b ∈C◦∪K for s, we need to show that [(VsnWn)n∈N]∼ ⪯ b. Now, by Lemma 10, [(VsnWn)n∈N]∼ is the least
upper bound for the ascending sequence (VsnWn)n∈N. Hence in order to show [(VsnWn)n∈N]∼ ⪯ b one only
has to show that b is an upper bound for (VsnWn)n∈N. Choose an arbitrary n ∈ N. We have, by Lemma 11
item 1, VsnWn ⪯ sn and since b is an upper bound for s, sn ⪯ b. Hence, for an arbitrary n ∈ N, VsnWn ⪯ b,
which establishes that b is an upper bound for (VsnWn)n∈N, which completes the proof of the lemma.

This concludes the construction of the ωCPO by completion.
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4 Proving Productiveness

As already noted in Section 2 obtaining an ωCPO is only the first step step towords our main goal -
defining total corecursive functions by unique fixpoints of their productive functionals by means of The-
orem 1. The second step is to prove the productiveness requirement for given functionals. As visible in
Definition 4, productiveness is concerned with certain sequences converging towards maximal elements.

4.1 Maximal vs. Totally Defined Elements

Maximality is easy to define, but it is not easy to prove in practice, especially for equivalence classes
denoting infinite elements in an ωCPO obtained by completion. In this section we provide an equivalent
notion to maximality, called total definability, which is easier to use in practice because it is “computa-
tional” in nature. It is based on a “definedness” function which takes values in N∪ {∞}, a set in which
one can perform computations: approximations, limits of sequences of numbers, etc. The definedness
function is expected to satisfy some assumptions, stated below and justified after the statement.

Assumption 2 We assume a definedness function δ : C◦→ N∪{∞} satisfying the following properties:

1. for all c,c′ ∈C◦, c ⪯◦ c′ implies δ c ≤ δ c′;

2. for all c ∈C◦, if δ c =∞ then c is maximal w.r.t. ⪯◦;

3. for all c ∈C◦ and N ∈ N, if δ c ≥ N then δ (VcWN) = N;

4. for all c,c′ ∈C◦ and N ∈ N, if c ⪯◦ c′ and δ c > N then VcWN = Vc′WN;

5. for all ascending sequences (sn)n∈N ∈ (C◦)ω and N ∈N such that for all n ∈N, δ sn ≤ N, there exists
i ∈ N and an increasing sequence (s′j) j≥i such that for all j ≥ i, s j ⪯

◦ s′j and N < δ s′j.

If δ c = n then we say that c is defined up to n. If c is defined up to∞ we also say that c is totally defined.

A Model for Assumption 2 Like Assumption 1, Assumption 2 has a model in the set of tree defined
in Example 1. Here, δ c is either: a natural number being the minimal length of a ⊥-position in c, if c has
such positions; or, c has no ⊥-positions, δ c =∞. With the convention that the minimum of an empty list
over N∪{ ∞} is∞, i.e., min [] =∞, δ can be recursively defined as follows:
δ c = if c = ⊥ then 0 else 1+min(map δ (forest◦ c)).

We now justify the assumptions on the δ function.

1. for all c,c′ ∈ C◦, c ⪯◦ c′ implies δ c ≤ δ c: This is monotonicity of δ. if c ⪯◦ c′ then either c = c′,
in which case δ c = δ c′, or c′ is obtained from c′ by rewriting some ⊥ subtrees by non-⊥ ones.
If c and c′ still have at least one, common, minimal ⊥ position then δ c′ = δ c. Otherwise, due to
rewriting, the ⊥ positions of c′ (if any) are strictly longer then those of c, which implies δ c < δ c′.

2. for all c ∈ C◦, if δ c = ∞ then c is maximal w.r.t. ⪯◦: δ c = ∞ means that c has no ⊥-positions,
i.e., it does not allow rewriting. If c were non-maximal there would be c′ with c ≺◦ c′, meaning
rewriting would be possible from c. But we have just seen that it is not. Hence, c is maximal.

3. for all c ∈C◦ and N ∈N, if δ c≥N then δ (VcWN)=N: δ c≥N means that the are no⊥-positions of c
of length < N. Now, the approximation VcWN replaces all trees at positions of length N in c by ⊥.
These all the occurences of ⊥ in VcWN , and their positions all have length N, i.e., δ (VcWN) = N.
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4. for all c,c′ ∈ C◦ and m ∈ N, if c ⪯◦ c′ and δ c > N then VcWN = Vc′WN : here, all the ⊥-positions of
c,c′ are of length > N, and c′ is obtained from c by rewriting in some (possiby, in zero) positions
of length > N. Hence, this does not affect positions of length ≤ N. In particular, for all p of length
≤ N, p is a position of c iff it is a position of c′, and if this is the case then c|p = c′

|p. Now, the
approximation of precision N replaces all trees at positions of length N by ⊥. After performing
the approximations, it is still the case that for all positions p of length ≤ N, p is a position of
VcWN iff it is a position of Vc′WN , and if this is the case then (VcWN)|p = (Vc′WN)|p; which implies
VcWN = Vc′WN .

5. for all ascending sequences (sn)n∈N ∈ (C◦)ω and N ∈N such that for all n ∈N, δ sn ≤ N, there exists
i ∈N and an increasing sequence (s′j) j≥i such that for all j ≥ i, s j ⪯

◦ s′j and N < δ s′j: we shall need
to further elaborate on the definition of ⪯◦ by rewriting: for c,c′ ∈ C◦ and l a list of positions, we
inductively define the statement c ⪯◦l c′ by c ⪯◦[] c and c ⪯◦(p ; l) c′ if there exist c′′ s.t. (c[c′′]p) ⪯◦l c′,
where “p ; l” denotes adding the element p at the head of the list l. We prove that c ⪯◦ c′ holds iff
there exists a l of ⊥-positions of c s.t. c ⪯◦l c′; and if the positions in l are mutually independent
from those in l′ and c ⪯◦l′ c′ and c ⪯◦l′′ c′′ then there exists c′′′′ such that c′ ⪯◦l′′ c′′′ and c′′ ⪯◦l′ c′′′′.
Back to the statement of interest, since (sn)n∈N ∈ (C◦)ω is ascending and for all n ∈ N, δ sn ≤ N,
there must exist a first index, say, i, after which all rewritings that generate the subsequent elements
of the sequence (s j) j≥i occur at non-minimal ⊥-positions. Otherwise, the minimal ⊥-positions are
rewritten infinitely many times and eventually their length becomes strictly greater than N, in
contradiction with the hypothesis for all n ∈ N, δ sn ≤ N. We have the index i and, by the manner
in which it was obtained,, for all j ≥ i s j ⪯

◦
l j

s j+1 for a list l j of non-minimal ⊥-positions of s j.

We now inductively build an increasing sequence (s′j) j≥i such that N < δ s′j for all j ≥ i and (more
than what the current statement requires) there is a list l′ of positions such that for all j≥ i, s j ⪯

◦
l′ s′j.

In the base case, let l′ be the list of all minimal ⊥-positions of si. By replacing ⊥ at all positions
in l′ with sufficiently tall trees, we obtain si ≺

◦
l′ s′i with N < δ s′i , which concludes this case.

Assume now the sequence (s′j) j≥i has been built up to some j ≥ i. From the induction hypothesis,
s j ⪯

◦
l′ s′j and N < δ s′j. We have also obtained above that s j ⪯

◦
l j

s j+1 holds for a list l j of non-
minimal positions of s j. Hence, the positions in l′ and l j are mutually independent. Thus, there
exists s′j+1 with s′j ⪯

◦
l j

s′j+1 and s j+1 ⪯
◦
l′ s′j+1. Moreover, N < δ s′j+1 (which results from N < δ s′j

and mononotonicity of δ). This completes the induction step and the construction of (s′j) j≥i with
the expected properties in the current statement. The model for Assumption 2 is also completed.

The remaining results in this section only rely on Assumption 1 and 2. They hold for any model of the
assumption, including the trees from Example 1 and as well as terms over various kinds of signatures.

Lemma 19 For all c ∈C◦, c is totally defined if and only if c is maximal w.r.t. ⪯◦.

Proof. (⇒): Suppose δ c =∞ but c is not maximal, i.e., there exists c′ ∈ C◦ such that c ≺◦ c′. Then, by
the monotonicity of δ - item 1 in Assumption 2, δ c′ =∞. Using Assumption 2 item 4, for all N ∈ N,
VcWN = Vc′WN . By choosing N large enough, using Lemma 2, we obtain VcWN = c and Vc′Wm = c′,
meaning that c = c′, in contradiction to c ≺◦ c′. The contradiction occurs due to the negation of the
maximality of c; hence, the maximality holds. (⇐): this is just Assumption 2 item 2.

Definition 10 The definedness function δ from Assumption 2 is extended over K by δ k= limL(δ(VkWm)m∈N)M.
The notions of definedness up to some n ∈ N∪{∞} and total definedness are extended to K as well.

Remark. The limit (a.k.a. least upper bound) of a sequence of elements in N∪ {∞} always exists, so
referring to it it Definition 10 is legitimate.
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Lemma 20 For k,k′ ∈ K, if k ⪯ k′ then δ k ≤ δ k′.

Proof. From k ⪯ k′ and Lemma 11 item 2, for all n ∈ N, VkWn ⪯ Vk′Wn, i.e., VkWn ⪯◦ Vk′Wn, hence, by
Assumption 2 item 1, for all n ∈ N, δ (VkWn) ≤ δ (Vk′Wn). Thus, limL(δ(VkWn)n∈N)M ≤ limL(δ(Vk′Wn)n∈N)M,
i.e., δ k ≤ δ k′.

Lemma 21 For k ∈ K and n,m ∈ N, n ≥ m implies VkWm = VVkWnWm.

Proof. Choose an arbitrary ascending sequence (s j) j∈N ∈ k. Choose arbitrarily n,m ∈ N such that
n ≥ m. Then, by Definition 6, VkWm = limL(Vs jWm) j∈NM and VkWn = limL(Vs jWn) j∈NM, hence, VVkWnWm =

VlimL(Vs jWn) j∈NMWm = limL(VVs jWnWm) j∈NM. Using Assumption 1 item 2.(e), since n ≥ m, VVs jWnWm =

Vs jWm, hence, limL(VVs jWnWm) j∈NM = limL(Vs jWm) j∈NM = VkWm. That is, we have obtained VVkWnWm =

VkWm for arbitrarily chosen n,m ∈ N such that n ≥ m, which proves the lemma.

Lemma 22 For all k ∈ K, if k ⪯ k′ and δ k =∞ then for all m ∈ N, VkWm = Vk′Wm.

Proof. From k ⪯ k′ and δ k = ∞ we obtain using Lemma 20 that δ k′ = ∞. We note that in the diag-
onal (VkWn)n∈N of k no element can be totally defined; otherwise by Lemma 19 that element would be
maximal, in contradiction with the ascending nature of (VkWn)n∈N established in Lemma 13. The same
reasoning holds for the diagonal of k′. Hence, for all n ∈ N, δ(VkW)n ∈ N and δ(Vk′W)n ∈ N.

Fix an arbitrary m ∈N. Since δ k = δ k′ =∞, there exists n such that n≥m, δ (VkW)n >m. Let c= VkWn

and c′ = Vk′Wn. Then, c,c′ ∈ C◦, and δ c > m. Moreover, from k ⪯ k′ we obtain using Lemma 11 item 2,
VkWn ⪯ Vk′Wn, hence, c ⪯ c′, i.e., c ⪯◦ c′. Using Assumption 2 item 4 we obtain VcWm = Vc′Wm, thus,
VVkWnWm = VVk′WnWm. Since n≥m, using Lemma 21 we obtain VkWm = VVkWnWm and Vk′Wm = VVk′WnWm,
i.e., for the arbitrarily chosen m ∈ N, VkWm = Vk′Wm, which proves the lemma.

Lemma 23 For sequences (sn)n∈N and (s′n)n∈N in (C◦)ω, if (sn)n∈N is ascending, (s′n)n∈N is increasing,
and for all n ∈ N, sn ⪯ s′n, then (s′n)n∈N is ascending and [(sn)n∈N]∼ ⪯ [(s′n)n∈N]∼.

Proof. Assume (s′n)n∈N is stabilizing to some value c ∈ C◦. Then for all n ∈ N, sn ⪯
◦ s′n ⪯

◦ c, and since
(sn)n∈N is ascending this contradicts Assumption 1 item 1. Hence, (s′n)n∈N is ascending. Let k = [(sn)n∈N]∼
and k′ = [(s′n)n∈N]∼. We have to prove k ⪯ k′, i.e., k ≾ k′ following Definition 8 item 3.(c). By Definition 7
this amounts to showing that for all N ∈N, VknWN ⪯◦ Vk′nWN . Choose an arbitrary N ∈N. By Definition 6,
VknWN ⪯◦ Vk′nWN amounts to proving limL(VsnWN)n∈NM ⪯◦ limL(Vs′nWN)n∈NM. Thanks to the hypothesis for
all n ∈ N, sn ⪯

◦ s′n, by using Assumption 1 item 2.(b) we obtain that for all n ∈ N, VsnWN ⪯◦ Vs′nWN .
Lemma 1 then establishes what was left to prove: limL(VsnW)n∈NM ⪯◦ limL(Vs′nW)n∈NM.

Lemma 24 Consider two ascending sequences (sn)n∈N and (s′n)n∈N in (C◦)ω, and N ∈ N such that
[(sn)n∈N]∼ ⪯ [(s′n)n∈N]∼ and for all n ∈ N, δ sn < N ≤ δ s′n. Then [(sn)n∈N]∼ ≺ [(s′n)n∈N]∼.

Proof. Let k = [(sn)n∈N]∼ and k′ = [(s′n)n∈N]∼. We have the hypothesis k ⪯ k′, i.e., k ≾ k′ following
Definition 8 item 3.(c), and have to show k ≺ k′. For, assuming the contrary, k = k′, i.e., for all M ∈
N, VknWM = Vk′nWM, and in particular VknWN = Vk′nWN . By Definition 6, the latter amounts to proving
limL(VsnWN)n∈NM= limL(Vs′nWN)n∈NM, which implies that for some sufficiently large n≥N, VsnWN = Vs′nWN .
But by hypothesis, δ sn < N, hence, by the monotonicity of δ in Assumption 2, δ (VsnWN) < N. Also by
hypothesis, δ s′n ≥ N, hence, by Assumption 2 item 3, δ(Vs′nWM) = N, leading to a contradiction. The
origin of the contradiction is the assumption k = k′, hence, k ≺ k′, which proves the lemma.

Lemma 25 For all k ∈ K, k is totally defined if and only if k is maximal w.r.t. ⪯.
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Proof. (⇒): Let k′ ∈ K such that k ⪯ k′. From δ k =∞ and Lemma 20 it follows that δ k′ =∞, and from
Lemma 22 if follows that for all m ∈ N, VkWm = Vk′Wm. By Definition 7, k′ ≾ k, i.e., k′ ⪯ k according to
Definition 8 item 3.(c). Hence, k is maximal w.r.t. ⪯.

(⇐): We show the contrapositive of this implication: assuming δ k ∈ N, we show that k is not
maximal. From δ k ∈N, by Definition 10, M :=max [(δ(VkWm)m∈N)] ∈N, thus, for all m ∈N, δ(VkWm)≤M.

Consider now Assumption 2 item 5 where (sm)m∈N := (VkWm)m∈N is an ascending sequence. We obtain
i ∈ N and an increasing sequence (s′j) j≥i such that for all j ≥ i, VkW j ⪯◦ s′j and N < δ s′j. For all j < i we
let s′j := (VkW j. Hence, for all j ∈, VkW j ⪯◦ s′j. Next, by Lemma 23, the increasing sequence (s′m)m∈N is
ascending, and k ⪯ limL(s′m)m∈NM. Finally, by Lemma 24 instantiated with N := M+1, k ≺ limL(s′m)m∈NM.
Hence, k is not maximal; which concludes the proof of the contrapositive of (⇐) and of the lemma.

4.2 Sufficient Conditions for Productiveness

We now use the results in the previous sections in order to give practical sufficient conditions for the
productiveness of functionals and, by way of consequence, for defining total corecursive functions as
unique fixpoints of the functionals in question. In this section we globally assume two partial orders
with least elements (D◦,⪯◦D,⊥D) and (C◦,⪯◦C ,⊥C). Let (D,⪯D,⊥D) and (C,⪯C ,⊥C) be the respective
ωCPOs built by completion, with KD and KC the respective sets of equivalence classes, VWD and VWC

their approximation functions, and δD, δC their definedness functions.

Notation. D̂ denotes the set of maximal elements of D. A function f ◦ : D◦→C◦ is strictly monotonic if
for all x,y ∈ D, x ≺◦D y implies f ◦ x ≺◦C f ◦ y. Note that a strictly monotonic function is also monotonic :
x ⪯◦D y implies f ◦ x ⪯◦C f ◦ y). The function f ◦ preserves definedness if for all x ∈ D, δC( f ◦ x) ≥ δD x.

Lemma 26 Assume f ◦ : D◦ → C◦ is strictly monotonic and definedness preserving, and the functional
F : (D̂→C)→ D̂→C is monotonic and ∀n ∈ N,∀x ∈ D̂,Fny x = f ◦(VxWn

D). Then F is productive.

Proof. Since F is monotonic, there remains to show the rest of the productiveness requirement: for all
x ∈ D̂, limL(Fny x)n∈NM is maximal in C. Thanks to the hypothesis ∀n ∈ N,∀x ∈ D̂, (Fny x) = f ◦(VxWn

D),
what we have to show is that for all x ∈ D̂, limL( f ◦(VxWn

D))n∈NM is maximal in C. There are two cases:

• if x ∈ D◦ ∩ D̂ then (VxWn
D)n∈N is increasing and stabilizes at its limit x. By monotonocity of f ◦,

( f ◦(VxWn
D))n∈N is also increasing and stabilizes at its limit f ◦ x. Since x is maximal, by Lemma 19

δD x =∞ and by hypothesis, δC ( f ◦ x) ≥ δD x =∞, hence, again by Lemma 19, f ◦ x is maximal in
C and since f ◦ x = limL( f ◦(VxWn

D))n∈NM we obtain the maximality of limL( f ◦(VxWn
D))n∈NM;

• x ∈ KD∩ D̂: by Lemma 13, (VxWn
D)n∈N is ascending and its limit is x. Now, none of the elements in

the sequence is maximal, otherwise the sequence would by stabilizing; hence, by Lemma 25, for
all n ∈ N, δD (VxWn

D) <∞. By (strict) monotonocity of f ◦, ( f ◦(VxWn
D))n∈N is also ascending. Since

x is maximal, by Lemma 13 δD x =∞, which, by Definition 10, means limL(δD (VxWn
D))Mn∈N) =∞.

Again, none of the elements in the sequence ( f ◦(VxWn
D))n∈N is maximal, otherwise the sequence

would by stabilizing, Hence, by Lemma 25, for all n ∈ N, δC ( f ◦(VxWn
D)) < ∞. By hypothesis,

δC ( f ◦(VxWn
D))≥ δD VxWn

D and therefore δC(limL( f ◦(VxWn
D))n∈NM)≥ δD(limL(VxWn

D)n∈NM)= δD x=∞,
which, using Lemma 13, implies that limL( f ◦(VxWn

D))n∈NM is maximal in C. The proof is done.

Lemma 26 is used in conjunction with Theorem 1 for defining total corecursive functions as unique
fixpoints of their functionals. We next illustrate how everything comes together on Rose trees.
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5 Rose Trees as an ωCPO and the mirror function as a unique fixpoint

In this section we define Rose trees using the finite trees in Example 1 and the ωCPO construction in
Section 3. We also define the mirror function, a total corecursive function between Rose trees, as a
unique fixpoint of its functional, proved to be productive using the techniques shown in Section 4.

Remember from Example 1 that finite trees C◦ have constructors ⊥ and tree◦ l for finite lists l of
finite trees. The prefix order ⪯◦ is such that for all t ∈ C◦, ⊥ ⪯◦ t, and for all lists l, l′ of trees having the
same length m, tree◦ l ⪯◦ tree◦ l′ if and only if for all i < m, l[i] ⪯◦ l′[i]. The forest◦ accessor is defined
from non-⊥ trees - i.e., trees of the form tree◦ l for l a list of finite trees, by forest◦(tree◦l) = l.

We have seen in the previous sections that, together with their approximations V W) and definedness
function δ, finite trees satisfy Assumptions 1 and 2 therefore constitute an ωCPO (C◦ ∪K,⪯,⊥) where
K is the set of equivalence classes of ascending sequences of finite trees, some of which are maximal -
or, equivalently, totally defined. Ascending sequences require trees having at least one branch that grows
“forever”, and their limits (in K) have at least one infinite branch. Overall, the set K together with the set
C◦ of finite trees constitute the set C◦∪K of Rose trees, of finite breadth and possibly infinite depth.

5.1 Extending the tree◦ Constructor and forest◦ Accessor from Finite Trees to Rose Trees

The ωCPO of Rose trees is not yet fully functional (for the purpose of defining total corecursive func-
tions) until we extend the tree◦ constructor and forest◦ accessor from finite trees to Rose trees. Indeed,
functionals for corecursive functions under definition use the extended constructors and accessors. Such
is the functional Mirror = λ f .λ t.tree (map f (reverse (forest t ))) for the mirror function that shall we
define.

We first extend he notion of diagonal, defined for equivalence classes in K (Def. 9), to C◦∪K.

Definition 11 For all c ∈C◦∪K, we define the diagonal of c to be the sequence (VcWn)n∈N.

Lemma 27 For all c ∈C◦∪K, the diagonal of c is an increasing sequence and its limit is c.

Proof. For c ∈ K we the result follows from Lemma 13. For c ∈ C◦, the sequence is increasing due to
Assumption 1 item 2.(c). By Lemma 2, for large enough n ∈ N, VcWn = c, meaning that (VcWn)n∈N is
increasing and stabilizes at c, hence its limt is c.

Consider a list l = [t0, . . . , tm−1] of elements in C = C◦ ∪ K. By Lemma 27, each ti is the limit of its
diagonal: ti = limL(VtiWn)n∈NM. Let us consider the sequence of lists ([Vt0Wn, . . . ,Vtm−1Wn])n∈N. This
sequence is pointwise increasing: for all n ∈N and i <m, VtiWn ⪯◦ VtiWn+1. Thanks to the monotonicity of
the ⪯◦ order, the sequence (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N is increasing as well. This justifies the following
definition:

Definition 12 tree [t0, . . . , tm−1] ≜ limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM.

We now give equivalent conditions under which tree [t0, . . . , tm−1] ∈C◦ and tree [t0, . . . , tm−1] ∈ K.

Lemma 28 tree [t0, . . . , tm−1] ∈C◦ if and only if for all i<m, ti ∈C◦. If this is the case then tree [t0, . . . , tm−1]=
tree◦ [t0, . . . , tm−1].

Proof.
(⇒): if tree [t0, . . . , tm−1] ∈ C◦ then the increasing sequence (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N cannot

be ascending; otherwise, its limit (and in particular upper bound) limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM,
which by Definition 12 satisfies limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM = tree [t0, . . . , tm−1], is in C◦, and
this contradicts Assumption 1 item 1. Hence, the sequence (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N is stabilizing.
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This implies that for all i < m, the increasing sequence (VtiWn)n∈N is stabilizing (the contrary would
imply that (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N is non-stabilizing as well). The value at which (VtiWn)n∈N is
stabilizing is its limit ti, hence, the latter is in C◦. This implies that (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N

stabilizes at tree◦ [t0, . . . , tm−1], meaning that limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM = tree◦ [t0, . . . , tm−1] and
using Definition 12, tree◦ [t0, . . . , tm−1] = tree [t0, . . . , tm−1].

(⇐): if for all i < m, ti ∈ C◦, then for all i < m, (VtiWn)n∈N is stabilizing at its limit ti. It fol-
lows that (tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N is stabilizing and its limit equals tree◦ [t0, . . . , tm−1] ∈ C◦. On
the other hand, by Definition 12, limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM = tree [t0, . . . , tm−1]. It follows that
tree [t0, . . . , tm−1] ∈C◦ and tree [t0, . . . , tm−1] = tree◦ [t0, . . . , tm−1].

Lemma 29 tree [t0, . . . , tm−1] ∈ K if and only if there exists i < m such that ti ∈ K. If this is the case then
tree [t0, . . . , tm−1] = [(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N]∼

Proof. tree [t0, . . . , tm−1] ∈ K is equivalent to tree [t0, . . . , tm−1] < C◦, which by Lemma 28 is equivalent to
the existence of some i<m such that ti ∈K. The statement tree [t0, . . . , tm−1]= [(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈N]∼
follows from Definition 12 and Definition 8 item 2 of limits of ascending sequences over C◦.

The next result holds in general (i.e., not only for sequences of trees) but was not needed until now.

Lemma 30 For any increasing sequence (sn)n∈N ∈ (C◦)ω, VlimL(sn)n∈NMWN = limL(VsnWN)n∈NM.

Proof. If the sequence is ascending then the lemma follows from Definition 6 and Definition 8 item 2. If
the sequence is stabilizing to some c ∈C◦ then VlimL(sn)n∈NMWN = VcWN = limL(VsnWN)n∈NM.

The following lemma states that the function tree from Definition 12 is continuous in the sense of Scott:

Lemma 31 For all m ∈ N, if for all i < m, the sequences (si
n)n∈N are increasing, then it holds that

limL(tree◦[s0
n, . . . , s

m−1
n ])n∈NM = tree [(limL(s0

n)n∈NM), . . . , (limL(sm−1
n )n∈NM)].

Proof. We first note that limL(tree◦[s0
n, . . . , s

m−1
n ])n∈NM exists due to monotonicity of the tree◦ constructor.

We first prove the lemma for the stabilizing case - all sequences (si
n)n∈N stabilize. They stabilize to their

limits limL(si
n)n∈NM, thus, (tree◦[s0

n, . . . , s
m−1
n ])n∈N stabilizes to tree◦[(limL(s0

n)n∈NM), . . . , (limL(sm−1
n )n∈NM)]

which by Lemma 28 equals tree [(limL(s0
n)n∈NM), . . . , (limL(sm−1

n )n∈NM)]; which proves the stabilizing case.
We now focus on the general case. Let ti = limL(si

n)n∈NM for i < m. By Def. 12, tree[t0, . . . , tm−1] =
limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM. But using Lemma 30, for all i<m and n ∈N, VtiWn ≜ VlimL(si

j) j∈NMWn =

limL(Vsi
jW

n) j∈NM, thus, tree◦[Vt0Wn, . . . ,Vtm−1Wn] = tree◦[(limL(Vs0
jW

n) j∈NM), . . . , (limL(Vsm−1
j Wn) j∈NM)] for

all n ∈ N. Hence, (†): tree[t0, . . . , tm−1] = limL(tree◦[(limL(Vs0
jW

n) j∈NM), . . . , (limL(Vsm−1
j Wn) j∈NM)])n∈NM.

In the right-hand side of the (†) equality, all sequences (Vs0
jW

n) j∈N, . . . , (Vsm−1
j Wn) j∈N stabilize. Us-

ing the stabilizing case estblished above we obtain tree◦[(limL(Vs0
jW

n) j∈NM), . . . , (limL(Vsm−1
j Wn) j∈NM)] =

limL(tree◦[(Vs0
jW

n), . . . , (Vsm−1
j Wn)]) j∈NM, for all n ∈ N. By rewriting the latter equality in (†) we ob-

tain (‡): tree[t0, . . . , tm−1] = limL(limL(tree◦[(Vs0
jW

n), . . . , (Vsm−1
j Wn)]) j∈NM)n∈NM. Using properties of the V W

function, for all n, j ∈ N, tree◦[(Vs0
jW

n), . . . , (Vsm−1
j Wn)] = Vtree◦[s0

j , . . . , s
m−1
j ]Wn+1. Rewriting this equal-

ity in (‡) gives (♯): tree[t0, . . . , tm−1] = limL(limL(Vtree◦[s0
j , . . . , s

m−1
j ]Wn+1) j∈NM)n∈NM. But the sequence

(VlimL(tree◦[s0
j , . . . , s

m−1
j ]) j∈NMWn+1)n∈N is just (VlimL(tree◦[s0

j , . . . , s
m−1
j ]) j∈NMWn)n∈N without its first el-

ement, hence, limL(VlimL(tree◦[s0
j , . . . , s

m−1
j ])M j∈N]Wn+1Mn∈N = limL(VlimL(tree◦[s0

j , . . . , s
m−1
j ])M j∈N]WnMn∈N,

which together (♯) gives by transitivity (♭): tree[t0, . . . , tm−1] = limL(limL(Vtree◦[s0
j , . . . , s

m−1
j ]Wn) j∈NM)n∈NM.

Using Lemma 30, limL(Vtree◦[s0
j , . . . , s

m−1
j ]Wn)M j∈N = VlimL(tree◦[s0

j , . . . , s
m−1
j ])M j∈NWn for all n ∈ N. By

rewriting the latter equality in (♭) we get (♮): tree[t0, . . . , tm−1]= limL(VlimL(tree◦[s0
j , . . . , s

m−1
j ])M j∈NWn)Mn∈N.
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By Lemma 27, limL(VlimL(tree◦[s0
j , . . . , s

m−1
j ])M j∈NWn)Mn∈N = limL(tree◦[s0

j , . . . , s
m−1
j ])M j∈N, and by transi-

tivity: (•): tree[t0, . . . , tm−1]= limL(tree◦[s0
j , . . . , s

m−1
j ])M j∈N. Finally, tree[limL(s0

n)n∈NM, . . . , limL(sm−1
n )n∈NM],

which is by definition tree[t0, . . . , tm−1], was proved by (•) equal to limL(tree◦[s0
j , . . . , s

m−1
j ])M j∈N: qed.

There remains to prove that tree satisfies the following properties of its restriction to finite trees:

• approximations: Vtree lW0 = ⊥ and Vtree lWN+1 = tree(map V·WN) l;

• monotonicity : tree l⪯ tree l′ iff for some m ∈N, length l= length l′ =m and for all i<,m, l[i]⪯ l′[i];

• surjectiveness for infinite trees: for all k ∈ K there exists l such that k = tree l;

• injectiveness: for all lists of Rose trees l, l′, tree l = tree l′ implies l = l′.

In particular, the last two properties will enable us to define the forest accessor for nonempty trees.

Lemma 32 For any list l over C◦∪K, Vtree lW0 =⊥ and for all N ∈N, Vtree lWN+1 = tree((map V·WN) l).

Proof. If all elements of l are in C◦ then the statements follows from the definition of V W for finite
trees. Assume now there is at least one element of l which is in K, and let l = [t0, . . . tm−1]. Then,
tree [t0, . . . tm−1] ∈ K by Lemma 29, and by Def 12, tree [t0, . . . tm−1] = limL(tree◦[Vt0Wn, . . . ,Vtm−1Wn])n∈NM.
Then, by Lemma 30, for all M ∈ N, (†): Vtree [t0, . . . tm−1]WM = limL(Vtree◦[Vt0Wn, . . . ,Vtm−1Wn]WM)n∈NM.

• if M = 0 then (†) reduces to Vtree lW0 being the limit of a sequence of ⊥, which proves the first
part of the lemma: Vtree lW0 = ⊥;

• if M > 0, i.e., M = N +1, the right-hand side of (†) becomes (by definition of V W for finite trees)
limL(tree◦[VVtn

0WWN , . . . ,VVtm−1WnWN
n∈N])M. For n ≥ N, by Assumption 1 item 5 it holds that for all

i < m, VVtiWnWN = VtiWN . Hence, the increasing sequence (tree◦[VVt0WnWN , . . . ,VVtm−1WnWN])n∈N

stabilizes to tree◦[Vt0WN , . . . ,Vtm−1WN]. Since for all i < m, VtiWN ∈ C◦ we have, by Lemma 28,
tree◦[Vt0WN , . . . ,Vtm−1WN] = tree[Vt0WN , . . . ,Vtm−1WN]. Remembering that l = [t0, . . . tm−1] and M =
N +1, (†) proves the second statement of the lemma: Vtree lWN+1 = tree((map V·WN) l).

Lemma 33 tree l ⪯ tree l′ iff for some m ∈ N, length l = length l′ = m and for all i = 1, . . . ,m, l[i] ⪯ l′[i].

Proof.
(⇒): if both l and l′ consist of finite trees then the statement follows from the definition of ⪯◦.

Otherwise, tree l ⪯ tree l′ holds in two possible cases:

• tree l ∈ C◦ and tree l′ ∈ K. Let m = length l. Using Lemma 28, for all i < m, l[i] ∈ C◦ and
tree l = tree◦ l. By Definition 8 item 3.(b), tree◦ l ⪯ tree l implies there exists M ∈ N such
that tree◦ l ⪯◦ Vtree lWM. Now, M = 0 is impossible since, by Lemma 32, this would imply the
impossible inequality tree◦ l ⪯◦ ⊥. Hence, M = N + 1 and then, using Lemma 32, we obtain
tree◦ l ⪯◦ tree(map (V·WM)l′). Now, all the elements of map (V·WM)l′ are finite trees, thus, using
Lemma 28, we obtain tree◦ l ⪯◦ tree◦(map (V·WN)l′). Using the properties of the constructor tree◦,
we obtain length(map (V·WM) l′) = length l = m and then length l′ = m using the property that map
preserves list length. Moreover, we obtain that for all i < m, l[i] ⪯◦ Vl′[i]WN , which, by Defini-
tion 8 item 3.(b) (if l′[i] ∈ K) resp. Assumption 1 item 2.(a) (if l′[i] ∈C◦) implies that for all i <m,
l[i] ⪯ l′[i], which settles this case.

• tree l ∈ K and tree l′ ∈ K. Then, using Definition 8 item 3.(c), for all N ∈ N, Vtree lWN+1 ⪯

Vtree l′WN+1. Fix an arbitrary N ∈ N. Uusing Lemma 32, tree (map(V·WN)l) ⪯ tree (map(V·WN)l),
which, using Lemma 28 and Lemma 8 item 3.(a), becomes tree◦ (map(V·WN)l)⪯◦ tree◦ (map(V·WN)l).
Next, using properties of the ⪯◦ order, length (map(V·WN)l) = length (map(V·WN)l) which implies
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length l = length l′ and let m denote the common value of the lengths. We obtain that for all i < m,
Vl[i]WN ⪯◦ Vl′[i]WN , and since N ∈ N has been chosen arbitrarily, by Definition 8 item 3.(b) (if
l′[i] ∈ K) resp. Lemma 2 (if l′[i] ∈ C◦) using Definition 8 item 3.(c), implies that for all i < m it
holds that l[i] ⪯ l′[i], which settles this case as well.

(⇐): again, if both l and l′ consist of finite trees then the statement follows from the definition
of ⪯◦. The case where l contains an element of K, say, at position i, why l′ contains only elements
of C◦ is impossible, since (by Definition 8 item 3), l[i] ∈ K cannot be in ⪯ order with l′[i] ∈C◦. The two
remaining cases are:

• l only consists of elements in C◦ and l′ contains at least one element in K: let 0 ≤ i1, i2, . . . in < m
be the positions where l′[i j] ∈ K for j = 1, . . . ,n. For any such index i j there is N j such that
l[i j] ⪯◦ Vl′[i j]WN j . Let N′ be the maximum of {N j| j = 1, . . . ,n}. For the positions in the list other
than i1, i2, . . . in, the elements at those positions are in C◦. Using Lemma 2, there exists N′′ such
that for all ip ∈ {0, . . .m− 1} \ {i1, . . . in}, Vl′[ip]WN′′ = l′[ip]. Take now N = max N′ N′′. Then,
using Assumption 1 item 2.(c), Lemma 2 and the hypothesis of the implication, we obtain (†):
for all i < m, l[i] ⪯◦ Vl′[i]WN . Next, since l contains only elements in C◦, by Lemma 28, tree l =
tree◦ l ∈C◦. We now show (‡): tree◦ l ⪯◦ Vtree l′WN+1, which by Definition 8 item 3.(b) implies the
desired conclusion tree l ⪯ tree l′. Now, (‡) amounts to tree◦ l ⪯◦ tree(map(V·WN) l′), which (since
length l = length l′ implies length l = length (map(V·WN)l′)) reduces to (†): this case is proved.

• both l and l′ contain at least one element of K. Then, by Lemma 29, tree l ∈ K and tree l′ ∈ K. In
order to prove tree l ⪯ tree l′, by Definition 8 item 3.(b), we need to prove tree l ≾ tree l′, which
by Lemma 8 amounts to proving (†): for all M ∈ N there exists M′ ∈ N such that V(tree l)WM ⪯◦

V(tree l′)WM′ . For M = 0 any M′ ∈ N will do. Now consider an arbitrary M > 0, i.e., M = N + 1.
Using Lemma 32 and the properties of ⪯◦, (†) reduces to proving (‡): for all N ∈ N and i < m,
there exists N′ ∈ N such that Vl[i]WN ⪯◦ Vl′[i]WN′ . Let 0 ≤ i1, i2, . . . in < m the positions at which
l′[i j] ∈ K for j = 1, . . . ,n. For any such index i j there is N j such that l[i j] ⪯◦ Vl′[i j]WN j . We choose
N ∈ N and let N′ be the maximum of {N}∪ {N j| j = 1, . . . ,n}. We show (‡) for the arbitrary N, i and
chosen N′:

– if l[i] ∈C◦ and l′[i] ∈C◦, Vl[i]WN ⪯◦ Vl′[i]WN′ results from l[i] ⪯◦ l′[i] (obtained from the hy-
pothesis l[i] ⪯ l′[i] and Definition 8 item 3.(a)), N ≤ N′, and Assumption 1 items 2.(b), 2.(c);

– if l[i] ∈ C◦ and l[i] ∈ K, we have Vl[i]WN ⪯◦ l[i] by Assumption 1 item 2.(a), hence, by Def-
inition 8 item 3.(a), Vl[i]WN ⪯ l[i]. Moreover, l[i] ⪯◦ Vl′[i]WN′ , from the definition of N′ and
Assumption 1 item 2.(c), and then l[i] ⪯ Vl′[i]WN′ by Definition 8 item 3.(a). By transitivity,
we obtain the desired Vl[i]WN ⪯ Vl′[i]WN′ ;

– if l[i] ∈ K and l[i] ∈ K, Vl[i]WN ⪯◦ Vl′[i]WN′ results from the hypothesis l[i]⪯ l′[i], N ≤ N′, and
Lemma 11 items 2 and 3. This completes the proof of the current subcase and of the lemma.

Lemma 34 For all k ∈ K there exists a list l of Rose trees such that k = tree l.

Proof. Consider the diagonal (VkWn)n∈N. By Lemma 13 it is an ascending sequence and its limit
is k. Hence, there exists M ∈ N such that for all j ≥ M, VkW j , ⊥. We choose M minimal with the
above property, hence, and for all j < M, VkW j = ⊥. Thus, for all j ≥ M, VkW j = tree◦ l j for some
list l j of finite trees. Due to the increasing nature of (VkWn)n∈N, all the lists l j have the same length,
say, m. Moreover, m > 0, because if m = 0 the sentence would be stabilizing. Thus (†): for all j ≥ M,
VkW j = tree◦ [t j

0, . . . t
j
m−1] with m > 0. For any arbitrarily chosen i < m, consider the sequence (tn+M

i )n∈N.
Thanks to properties of ⪯◦ the sequence is increasing, and let ti be its limit. There remains to prove
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that k = tree [t0, . . . , tm−1]. By Lemma 31, tree [t0, . . . , tm−1] = limL(tree◦[tn+M
0 , . . . , tn+M

m−1 ])n∈NM. Using (†),
limL(tree◦[tn+M

0 , . . . , tn+M
m−1 ])n∈NM = limL(VkWn+M)n∈NM. But (VkWn+M)n∈N is a subsequence of (VkWn)n∈N,

hence, using Lemma 12 the latter two sequences are similar and have the same limit k. This proves
tree [t0, . . . , tm−1] = k and the lemma.

Lemma 35 For all lists of Rose trees l, l′, tree l = tree l′ implies l = l′.

Proof. tree l = tree l′ implies tree l ⪯ tree l′ and tree l′ ⪯ tree l. The former implies length l = length l′ =m
for some m ∈ N and for all i < m, l[i] ⪯ l′[i]. Symmetrically, for all i < m, l′[i] ⪯ l[i]. It follows that
length l = length l′ = m for some m ∈ N and for all i < m, l[i] = l′[i], i.e., the equality of the two lists.

We can now define the forest function as an extension of the forest◦ accessor:

Definition 13 Given t ∈ (C◦ \ {⊥})∪K, we define forest t as follows:

• if t ∈C◦ \ {⊥} then forest t = forest◦ t;

• if t ∈ K then we let forest t = l, where l is the unique list of trees such that t = tree l. (The existence
and uniquencess of l is ensured by Lemmas 34 and 35.)

The tree and forest functions satisfy the expected equations which they inherit from tree◦ and forest◦:

Lemma 36 For all t ∈ (C◦ \ {⊥})∪K, tree (forest t) = t, and for all lists l of Rose trees, forest (tree l) = l.

Proof. We prove the first statement in the lemma. Let t ∈ (C◦ \ {⊥})∪K. If t ∈ (C◦ \ {⊥}) the statement
holds due to properties of the tree◦ constructor and forest◦ accessor. If t ∈ K then, by Definition 13,
forest t is the unique list of trees l such that t = tree l, i.e., t = tree (forest t).

We focus on the second statement. If l is a list of finite trees then by Lemma 28 tree l = tree◦ l ∈ C◦

and then forest (tree l) = forest◦(tree◦l), and the statement follows from forest◦ (tree◦ l) = l. If l contains
at least one infinite tree then by Lemma 29, tree l ∈ K. The statement forest (tree l) = l follows from
Definition 13.

We now have all the ingredients for writing functionals involving Rose trees and for defining func-
tions over Rose trees as unique fixpoints of the functionals in question.

6 Defining a Total Mirror Function Between Rose Trees

The mirror function for totally defined (equivalently, maximal) Rose trees, which we shall define via
its fixpoint equation, has the functional defined by Mirror f t̂ = tree(map f (reverse (forest t̂ ))), for
all functions f : T̂ree→ Tree and t̂ : T̂ree, where T̂ree denotes maximal elements in the ωCPO of Rose
trees. For defining the mirror function via the equation mirror = Mirror mirror we use Theorem 1,
which requires us to prove that the functional Mirror is productive. The productiveness is established via
Lemma 26. For this, we first prove that F it is monotonic, then inductively define a mirror function for
finite trees t◦, mirror◦ t◦ = if t◦ = ⊥ then⊥ else tree◦(map mirror◦(reverse (forest t◦))). Next, we show
that mirror◦ is strictly increasing and preserves definedness, which are routine‘ proofs by induction on
finite trees. Finally we prove the last (and nontrivial) part of the sufficient condition in a separate lemma:

Lemma 37 For all n ∈ N and t̂ ∈ T̂ree, Mirrorny t̂ = mirror◦(V t̂Wn)

Proof. By induction on n. The base case is trivial as it reduces to ⊥ = ⊥. For the inductive step: assume
that for all t̂ ∈ T̂ree, Mirrorny t̂ = mirror◦(V t̂Wn). Fix an arbitrary t̂ ∈ T̂ree. We have the equality chain:

Mirrorn+1y t̂ = (by definition of iteration of a functional)
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Mirror(Mirrorny) t̂ = (by induction hypothesis and properties of function composition ◦)
Mirror (mirror◦ ◦ (V ·Wn)) t̂ = (using t̂ = tree (forest t̂) that holds by Lemma 36)
Mirror (mirror◦ ◦ (V ·Wn)) (tree (forest t̂)) = (by definition of Mirror)
tree (map (mirror◦ ◦ (V ·Wn)))(reverse(forest t̂)) = (by Lemma 28)
tree◦(map (mirror◦ ◦ (V ·Wn))(reverse(forest t̂))) = (by properties of map vs. ◦)
tree◦(map mirror◦(map(V ·Wn)(reverse(forest t̂)))) = (by properties of map vs. reverse)
tree◦(map mirror◦(reverse(map(V·Wn) forest t̂))) = (by definition of mirror◦)
mirror◦(tree◦(map(V·Wn) forest t̂)) = (by Lemma 28)
mirror◦(tree (map(V·Wn) forest t̂)) = (by Lemma 32)
mirror◦(V tree (forest t̂)Wn+1) = (using t̂ = tree (forest t̂) that holds by Lemma 36)
mirror◦(V t̂Wn+1)

which concludes the proof of the induction step and of the lemma.

Then, Lemma 26 ensures that Mirror is productive and Theorem 1 says that there is a unique function
mirror : T̂ree→ T̂ree such that mirror =Mirror mirror, i.e., for all maximal (a.k.a. totally defined) Rose
trees t̂, mirror t̂ = map mirror (reverse (forest t̂ )); which was our original goal.

7 Conclusion, Related Work and Future Work

We have shown a way to build an ωCPO from a partially ordered set satisfying certain assumptions re-
garding approximations and definedness measures. The assumptions have a model as finite trees, and
more generally, as terms built over various classes of signatures. The ωCPO resulting by completion in-
herits the approximation and definedness measures and enables, in combination with earlier results [9], to
define total corecursive functions as unique fixpoints of their productive functionals. The approximation
and definedness measures are employed in the design of practically usable, liberal sufficient conditions
for productiveness. We illustrate the resulting approach for defining the mirror function on Rose trees as
the unique fixpoint of its functional. The approach will be implemented in Coq as it is mainly designed
to increase the (currently very limited) expressiveness of corecursive functions definable in Coq.

Related Work. Our completion operation has similarities with the classical construction of real num-
bers based on completing rationals with equivalence classes of Cauchy sequences of rationals. However,
Cauchy sequences require metric spaces, with a distance function satisfying certain properties, and it
does not seem possible tree-like datatypes such as Rose trees and their natural prefix order as a metric
space. We have investigated this and found the reason: the distance requires a “weak totality” property
that the prefix order does not satisfy. Defining corecursive functions based on Cauchy sequences is men-
tioned in [7]. Using Banach’s fixpoint theorem, corecursive functions are defined as unique fixpoints
of eventually contracting functionals. However, their work is not concerned with extending the class of
definable total corecursive functions beyond the guarded ones, whereas for us that is the major goal.

We now compare our work with some textbook results from elementary domain theory [2](Chapter 1).
The fixpoint theorem that we are using is a specialized version of Kleene’s theorem, stating that contin-
uous functionals over CPOs (a generalization of ωCPOs) have a least fixpoint. Kleene’s theorem can
be used for defining partial functions, and does not guarantee in any way that the resulting function is
total. For totality one needs productiveness, and our version of the theorem specifically uses productive-
ness for defining total functions. Another textbook result is completion by ideals that transforms partial
orders into CPOs and monotonic functions between partial orders into continuous functions between
CPOs. Moreover, completion by ideals is a free construction, in a categorical sense; it satisfies the fewest
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possible properties in order to be a completion to a CPO. However, in order to define total corecursive
functions with our approach one needs an extension of a restriction of CPOs, namely, ωCPOs extended
with specific approximation and definedness measures. Hence, completion by ideals as such is not useful
for our approach. However, an refinement of it that would transform partial orders + approximation and
definedness measures to CPOs inheriting those measures could be useful, especially if it were a free con-
struction. In that case, some tedious results that users need to prove “by hand” for each datatype (namely,
the extension of constructors and accessors of inductive types to the completed types, and their properties
- in our case, all of Section 5.1) are mere consequences of the (for now, hypothetical completion) being
free. We are planning to investigate this idea in future work.

Corecursion is present in several major proof assistants. In Coq, corecursive function definitions
have to satisfy a guardedness-by-constructors criterion. In some cases, a function that is not guarded can
be transformed into an equivalent, guarded function [4]. Their idea is to use an ad-hoc predicate stating
that the definition under study is, in some sense, productive. However, they do not handle the case where
corecursive calls are guarded by non-constructor functions, such as our mirror function for Rose trees.

Agda [11] is a proof assistant with an underlying type theory close to that of Coq. It also offers
support for corecursive function definition. In the core tool there is a guardedness checker similar to that
of Coq, but somewhat more liberal. Extensions of Agda include sized types [10] that provide users with a
uniform, automatic way of handling termination and productiveness. The implementation of sized types
is currently unsound (cf. https://github.com/agda/agda/issues/3026).

Isabelle/HOL [12] is also major proof assistant which supports corecursive functions. It accept func-
tion that go beyond guarded corecursion [5], provided the functions are friendly (a friendly function
needs to destruct at most one constructor of input to produce one constructor of output). Unguarded
corecursive calls are also accepted, provided they eventually produce a constructor of output. Like in our
case, the user needs to prove the conditions ensuring the well-formedness of corecursive functions.

Future Work. We have already mentioned the idea of presenting our approach as a free construction.
This is theoretical work but has practical benefits since it eases the burden users have to go through
with the current completion operation for each datatype on which they wish to define total corecursive
functions. Another more practical line of work is to find applications where productive but unguarded
corecursive functions are necessary. We found one in the semantics of synchronous reactive languages.
Specifically, synchronous languages allowing the writing of nondeterministic programs have executions
that are Rose trees, and the functions involved in their semantics are total, productive but unguarded -
an interesting test-bed for our approach. Finally, the approach is targeting Coq but it is general enough
to be immplemented in other proof assistants. An interesting candidate is Lean [8], a proof assistant
from the same family as Coq, which to our best knowledge does not have include coinductive types nor
corecursive functions, but does heave quotient types, which our approach would definitely benefit from.

References

[1] : The Coq Proof Assistant. https://coq.inria.fr/.

[2] Roberto M. Amadio & Pierre-Louis Curien (1998): Domains and lambda-calculi. Cambridge tracts in theo-
retical computer science 46, Cambridge University Press.

[3] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1017/CBO9781139172752.

https://github.com/agda/agda/issues/3026
https://coq.inria.fr/
http://dx.doi.org/10.1017/CBO9781139172752


22 Towards Corecursion Without Corecursion in Coq

[4] Y. Bertot & E. Komendantskaya (2008): Inductive and Coinductive Components of Corecursive Functions
in Coq. In: Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science, CMCS 2008,
Budapest, Hungary, April 4-6, 2008, Electronic Notes in Theoretical Computer Science 203, pp. 25–47.

[5] J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu & D. Traytel: Defining Nonprimitively (Co)recursive
Functions in Isabelle/HOL. https://isabelle.in.tum.de/dist/Isabelle2021/doc/corec.pdf.
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