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Abstract: In recent years, many applications of voice wake-up technology have entered peoples field of vision. The

key technology is Keyword Spotting. The system needs to detect the ambient voice waiting for a wake-up at any

time, so it requires a low hardware energy and high recognition accuracy. This paper aims at real-time speech

keyword detection applications. Based on Googles open source speech commands dataset and Librispeech

dataset, combined with various fault-tolerant calculations, a deep neural network that suitable for low-power

integrated circuits are constructed and trained. The main structure of the network is the Depthwise Convolution

Network (DSC). The energy consumption and resource overhead of the model in hardware implementation is

reduced by combining various fault-tolerant calculation methods such as approximation addition, quantification,

and binarization. The fault tolerance of the model is improved through retraining method. We proved that the

fault-tolerant calculation method of quantization with approximation addition has great potential in small-footprint

keyword spotting neural network.
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1 Introduction

The goal of keyword spotting is to detect a relatively
small set of voice commands. It is commonly used in
mobile phones and smart hardware. Keyword detection
on such devices typically has two main uses. One is to
identify common command word recognitions such as
”on” and ”off” and other common words such as ”yes”
and ”no”. Second, keyword detection can be used to
identify wake words, such as ”Hi Siri.” This gives the
device a clear indication of the opening.

The online speech recognition systems need to be
called from the cloud to call the model on the device,
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which brings some user privacy leakage during the
networking process. In addition, the application devices
are mostly power-consuming, performance-sensitive
devices, and the keyword wake-up system usually needs
to maintain a normally open state, thus not allowing the
system to have large power consumption and memory
usage. So keyword spotting task requires a low power
offline model.

In recent years, neural networks have be proven to
provide an effective solution for low-power keyword
wake-up systems.The biggest difference between the
KWS keyword wake-up system based on deep neural
network and the traditional hidden Markov model
(HMM)[12] is that the deep keyword wake-up system
does not need to separately distinguish the phonemes of
the speech, but an end-to-end model.

In this work, we focus on convolutional neural
networks (CNNs), which have also be proven to
be suitable for keyword wake-up systems in recent
years[13]. We use the neural network smiliar to
MobileNet[11], combined with various fault-tolerant
calculation methods such as approximation addition,
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Fig. 1 Deep keyword spotting system

quantization and binarization, etc. to reduce the amount
of parameters and calculation of the model.

We proved that the method of quantization with
approximation addition can reduce storage and
computational complexity at the same time with an
acceptable decline of performance, which is better than
the method only use quantization.

We describe our model and fault-tolerant calculation
methods used in section2. Experimental environment
and training methods are elaborated in section3. Results
and some discussion follow in Section4. Section5
makes a summary.

2 System design

The general process of end-to-end keyword wake-up
system can be divided into several parts is shown in
Figure 1. First, feature extraction of the original audio
data is performed to obtain a highly representative
feature vector. The feature vector is then sent to the
deep neural network, which outputs the probability that
the audio belongs to a certain type of word. The most
important part of KWS system this paper talk about is
feature extraction and neural network model.

2.1 Feature Extraction

The feature extraction method is the Mel Frequency
Cepstrum Coefficient(MFCC), which is common to
related work[9][19]. The frame window length is 36ms
and step length is 16ms. The first 10 Mel frequency
filters are used for each frame. The word duration of
Speech commands dataset is 1000ms but we use 512ms
to reduce power consumption. The output of MFCC
module is a 300-D feature vector, corresponds to 30
frames of 512ms audio clip(10 filters/frames). Actually,
the MFCC features mainly distributed between -64 and
63, as shown in Figure 2. So we quantify the input value
to 8bit.

Fig. 2 Distribution of MFCC output

2.2 Neural network model structure

Recently, depthwise convolution(DSC) has been
proposed to replace the standard 3-D convolution
operation[10] and has been used in the field of
computer vision to implement compact network
architectures[11][15]. The DSC first convolves each
channel in the input feature map with a separate 2-D
convolution kernel and then combines the outputs using
point-by-point convolution (ie, 1 1 convolution). By
decomposing standard 3D volume into 2D convolution,
depthwise convolution is more efficient in terms of the
number of parameters and operations, which allows
more complex networks to migrate to hardware-
sensitive applications such as mobile. The baseline
network structure we use is similar to the structure
in[4]. As shown in the Figure 3, the input MFCC
feature values are first processed by a traditional 2-D
convolution layer. Then the output is connected with
several DS-Conv convolution modules and finally
flattened and connected to the fully connected output
layer. Each DS-Conv module consists of a 3x3 Depth-
wise Conv, a 1x1 point-by-point convolution, and a
number of Batch Normalizations[16]. The details of
model parameter and operator number are listed in
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Fig. 3 Architecture of baseline model. m and n represent the time and frequency span of the convolution kernel. The kernel
can stride by a non-zero amount p in time and s in frequency. n represent the output channel number of convolution kernel.
The last three columns count the amount of model parameters and the number of multiplications and additions. The initial
parameters are all 8 bit numbers.

Figure 3.

2.3 Fault-tolerant calculation method

Since the neural network itself has certain fault
tolerance, especially through the retraining method,
the negative impact of the erroneous operation on
the network recognition rate can be weakened or
even offset. This article focuses on several methods
of approximate calculation: (i)approximate addition,
(ii)quantification, and (iii)binarization.

2.3.1 Approximate addition
Approximate addition has been studied in related
papers[20][21] this year. The approximate adder used
in this paper is shown in the fig 4 and is divided into
two parts. One part is the precision adder and the other
part is the approximate adder. Assuming that two n bits
data are added, setting the exact number of bits tom, the
exact adder calculates the sum of the first m bits of the
n bits data, and the remaining n −m bits are replaced
with logical ’OR’ operations. In fact, the use of ’OR’
operations eliminates the carry compared to the exact
addition, so the amount of computation can be reduced
to some extent.

2.3.2 Quantification
Quantification, also known as fixed point. Refers to
quantizing the weights and outputs in the network to a
fixed number of bits. In the training of neural networks,
data of full precision(32 bits) is generally used. In
fact, too high data precision is redundant. Therefore,
the main idea of the quantification method is to lower

Fig. 4 Approximate adder

the weight and output value of the original high bit
width by a certain bit width. Some related work[3][4]
change the network data from 32bit to 8bit, which
usually has little impact on the accuracy of the network.
The quantification method used in this paper is shown
in Algorithm1. Suppose the input is a 32-bit floating
point number. First round it to an integer, then limit its
maximum and minimum values to (−2n−1, 2n−1 − 1),
where n represents the quantization data width.

Algorithm 1 : Quantize input float data x to integer y, given
a target bit width m.

n← bit width(x)

b← 2n−1

x
′
← round(x)

y ← clip(x
′
,−b, b− 1)

2.3.3 Binarization
Binarization method uses the two values for the weight
or activation value. The method of binarization was
first proposed by Bengio et al. in 2016 [5][17]. They
use the values +1 and -1 to binarize both the weights
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and activations. Many forward multiply operations
can be converted to ’XOR’ operations during forward
propagation[18], greatly simplifying the design of
hardware circuit. The binarization method used in this
paper is based on the results of Bengio et al., using
the symbolic function sign() for weights or activation
values.

3 Experimental

3.1 Dataset

Our training set consists of two parts of the data.
The first set is Google’s Speech Commands dateset[1],
which contains 30 kinds of keywords and several
background noise. The second set is Librispeech[2],
which is one of the world’s largest ASR dataset. The
wake-up keywords this paper use are Happy and Dog.
Speech Commands dataset contains around 1700 clips
of each word. To extend the data set, we cut out the
keywords audio clips from Librispeech dataset with
Deepspeech model[6], which can transform speech to
text(STT). Finally, dataset contains about 4000 clips of
each keyword and the remaining 60,000 audios are set
as filler(unknown word) words. The dataset is split into
training, validation, and test with a ratio of 8:1:1.

3.2 Train

All models are trained in the same framework(Google
Tensorflow framework[7]), using the cross-entropy loss
and Adam optimizer[8]. Most fault-tolerant calculation
functions have no continuous derivatives. So the model
with fault-tolerant methods are trained by straight-
through estimator(STE)[14], which simply replaces the
derivative of each fault-tolerant functions with with the
identity function. Models are trained with a mini-batch
of 100 and iterate 15k times. The initial learning rate
is 5 ∗ 10−3, which is reduced to 1 ∗ 10−4 after 12k
iterations. During the training process, background
noise from Speech commands dataset is randomly
mixed into the audio.

4 Results and Discussion

4.1 Training results

The baseline model is the 8bits version of DSC model
mentioned in Section 2. We first compare the baseline
model with traditional DNN[9] and CNN[4] model in
terms of parameter number, calculation amount and
test set accuracy. The result can be seen in Table 1.
Obviously, the baseline model trades a larger amount of

Model
Par.

/8bits
Ops

(Mul. and Add.)
Test

accuracy
DNN1[9] 81.2k 195k 98.921%
CNN1[4] 45.1k 5.1M 99.442%
DSCNN 24.7k 6.2M 99.586%

Table 1 Comparison of baseline model with traditional
DNN[9] and CNN[4] model

calculation for a relatively small amount of parameters
and a high test set accuracy.

4.1.1 Quantification results
To reduce the amount of calculation without changing
the model structure, the calculation process needs to
be streamlined. There are roughly two ways to reduce
the amount of calculations. The most straightforward
method is to quantify network parameters and
activations. The other way is to simplify the multiply
and add calculation. Table 2 shows the result of quantify
parameters of baseline model with less bits. In order
to compare the quantized network calculations, we
introduce the bit operations(bOps):

bOps = Bit width ∗Operations

For example, the baseline model’s bOps is 8∗6.2M =

49.6MbOps. The most extreme quantification is to
quantify the parameters to 1bit, which equivalent to
binarized neural network(BNN) as shown in the last
row of the table 2. Figure 5 is the modified receiver
operating characteristic (ROC) curves of quantized
models, where we use false reject rate on Y-axis instead
of true positive rate. Assume the maximum probability
of model output is Pmax and the threhold of output is T .
If Pmax > T , the prediction label of the model is the
one corresponding to Pmax. Otherwise, the prediction
label will be considered as ’filler’. When sweeping
the threhold T , model’s prediction will change, so that
different false reject rate and false alarm rate can be
caculated. Each group of false alarm rate (X axis) and
false reject rate (Y axis) corresponds to one point on
ROC. The closer the ROC is to the coordinate axis, the

Model bOps
Test

accuracy
AUC

(10−3)
Baseline(8bits) 49.6M 99.586% 0.16
quantized-7bits 43.4M 99.628% 0.25
quantized-6bits 37.2M 99.598% 0.26
quantized-5bits 31.0M 99.572% 0.19
quantized-4bits 24.8M 99.172% 0.76

quantized-1bits(BNN) 6.2M 98.187% 4.50

Table 2 Quantized network comparison
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Fig. 5 ROC of quantized models

better the model is. The last column of table 2 is AUC,
which is the under area of ROC curve. Smaller AUCs is
better. It can be seen from the table 2 and Figure 5 that
when the quantization bit width is gradually reduced
from 8 to 5, the difference between the test set accuracy
rate and the AUC value of the model is small, and when
it is reduced to 4 bits, the accuracy of the model and the
AUC value have a large decline. The model that was
quantized to 1 bit(BNN) performed the worst, which is
also in line with expectations.

4.1.2 Approximate addition result
Quantization only changes the calculated bit width of

the model, which reduces the amount of calculation
to some extent. The approximate addition greatly
reduces the computational complexity from the addition
operation. Based on the quantized modelwe replace the
addition operation in the framwork with approximate
adder mentioned in Section 2. On a model quantized
to 7-bit, 6-bit, and 5-bit, about half of the number of
bits is approximatly added. The result is shown in the
Table 3 and Figure 6. Qx Ay means the parameters
of the model are quantized to x bits, where y bits are
approximated. From the perspective of model accuracy

Model Test accuracy AUC (10−3)
Q7 A4 98.900% 1.16
Q7 A3 99.171% 0.49
Q6 A3 99.286% 0.65
Q5 A3 99.305% 0.66
Q5 A2 99.357% 0.45

Table 3 Quantized network with approximate addition

Fig. 6 ROC of Approximate addition model.

and AUC values, the model that quantized to 5-bit with
2-bit approximate adder achieves better results. By
quantifying to 5 bits and accumulating approximately 3
bits, the computational complexity of the model can be
minimized under the premise of obtaining higher model
accuracy and AUC values.

5 Conclusions

We tested a variety of fault-tolerant calculation methods
on our DSC baseline model. For the quantization
model, we find that the model still maintains high
accuracy and AUC value when quantization bit is
reduced from 8 bits to 5 bits. The model accuracy
begins to drop sharply while the number of quantization
bits continues to decrease from 4 bits to 1 bit(BNN).
Compared to the baseline 8-bit version, the 5-bit
quantized model can achieve a ×37.5% reduction in
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bOps. In addition, we found that the 5-bit quantization
with 3 bits approximate adder model can further
reduces the computational complexity of the model and
sacrifices only 0.26% accuracy rate and 0.47 × 10−3

AUC relative to the 5-bit quantization model. It can
be seen that the fault-tolerant calculation method of
quantization with approximation addition can reduce
storage and computational complexity at the same
time with an acceptable decline of performance, which
has great potential in small-footprint keyword spotting
neural network.
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