
EasyChair Preprint
№ 4826

An Efficient Optimized Sorting Technique Using
Combination of Other Techniques

Nitin Mishra, Pranjal Srivastava, Khushi Gupta and
Kunal Singh Teotia

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 29, 2020



An Efficient Optimized sorting technique using
combination of other techniques

Dr. Nitin Mishra
School of Computing Science

and Engineering
Galgotias University
Greater Noida , India

Email: drnitinmishra10@gmail.com

PRANJAL SRIVASTAVA
School of Computing Science

and Engineering
Galgotias University
Greater Noida , India

Khushi Gupta
School of Computing Science

and Engineering
Galgotias University
Greater Noida , India

Kunal Singh Teotia
School of Computing

Science and Engineering
Galgotias University
Greater Noida , India

Abstract—The problem of sorting is a problem that arises
frequently in computer programming and though which is need
to be resolved. Many different sorting algorithms have been
developed and improved to make sorting optimized and fast.
As a measure of performance mainly the average number of
operations or the average execution times of these algorithms
have been compared. There is no one sorting method that is
best for every situation. Some of the factors to be considered in
choosing a sorting algorithm include the size of the list to be
sorted, the programming effort, the number of words of main
memory available,the size of disk or tape units, the extent to
which the list is already ordered, and the distribution of values.

Index Terms—Sorting, complexity lists, comparisons, move-
ment sorting algorithms, methods, stable,unstable, internal sort-
ing

I. INTRODUCTION

Sorting is one of the very most important and well-studied
problems in computer science. Many great algorithms offer a
variety of trades for efficient, easy-to-use, memory usage, and
other items. However, these algorithms do not think features
of modern computer technology that greatly influence perfor-
mance. A large number of suggested filtering algorithms and
their asymptotic complexity, depending on the comparative
value or multiplication value, be careful updated. In the past,
there has been a growing interest in the development of filter-
ing algorithms that do not affect their asymptotic complexity
but nonetheless improve performance by improving the data
center. Since the advent of the computer, the filtering issue has
been very interesting research, perhaps because of the problem
of solving it well without being an easy, standard statement.
It cannot always be said that a single filtering algorithm is
better there is another filtering algorithm. The performance
of various filtering algorithms depends on the data that is
filtered. Sorting is often understood as a reorganization process
of a given set of items in a particular order. In particular,
filtering is a relevant topic in the show a wide variety of
algorithms, all with the same purpose, many of them are good
in a sense and most of them are more valuable than others.
The filter model is well-suited to show how much profit it is in
performance can be achieved by building a complex algorithm
their obvious methods are readily available. In our research
we are going to optimize the way of doing sorting through

algorithms. We are going to propose a new algorithm which
acts as an orchestrator for our function. Like, when the array
is given to us it goes in the orchestrator method and here
the main task comes. The orchestrator automatically selects
from the different sorting techniques going to be used after the
completion of one step. Keeping the view on their effectiveness
at every case i.e. Worst case, Average case, and best case, the
sorting technique is chosen. In this newly proposed algorithm,
we can use multiple sorting techniques in a single problem,
thus getting the solution more optimized.

II. OBJECTIVE

The aim of this optimization technique is to reduce the
certain complexities such as time complexity space complexity
and make the sorting algorithm technique more feasible and
easy to solve. The following objectives are designed to fulfill
the aim of this optimization technique:

1) Automatic selection of sorting algorithm according to
the need and requirement of the particular step.

2) It will select sorting technique which has less time
complexity and less space complexity and which best
complements the sorting array.

These function will help the array to sort faster with less
complexity and it will more efficient. In our research paper
we will mention all the advantages of this optimization that
how it will be beneficial and all the drawbacks or problems
for which it lacks to help.

III. RELATED WORK

Four-dimensional (4D) computed tomography (CT) has
been widely used as a visual aid in radiotherapy. Two of
the most widely used 4D CT algorithms classify images
with a corresponding respiratory phase or transfer to a pre-
defined number of drums, and tend to look at art objects
for switching between sleeping areas. The purpose of this
work is to show how to reduce the activity of motion in
4D CT by incorporating anatomic similarities in phase or
migration planning agreements. Methods: Ten patient data sets
are rearranged using both migration and phase-level layout
planning. Standard filtering methods allow for the selection
of a close-up photo of a neighbor at a time or a move



within each barrel. In our approach, in each bed area or
migration or section defines the center of the drum distance
in terms of which multiple selected images are selected. The
coefficients of the intersection of the two ends between the
boundary pieces of the connector between the adjacent sofa
areas are calculated for all pairs. The two pieces have a high
cohesiveness when they are similar in shape. Nominees for
each bin are selected to maximize slide integration across all
preset data using the shortcut Dijkstra method algorithm. To
examine the reduction of archeology, two thoracic radiation
oncologists independently compare 4D datasets using stan-
dardized dasets, blinded to the filter path, to select which less
moving objects. Agreement between reviewers was assessed
using points weighing in kappa. Results: Anatomically based
image selection resulted in 4D CT data sets with significantly
reduced reductions for all migrations (P = 0.0063) and phase
classification (P = 0.00022). There was a good agreement
between the two analysts, with a total agreement 34 times
and a complete disagreement six times. Conclusions: Prepared
editing using anatomic similarities significantly reduces 4D CT
moving objects compared to standard phase or locally-based
filtering. This advanced filtering algorithm is a direct extension
of the most common 4D CT filtering algorithms.

IV. OPTIMIZING SORTING WITH GENETIC
ALGORITHMS

The growing complexity of modern processors has made
the development of more efficient code more difficult. The
production of manual code takes a lot of time, but it is often
the only option as the code generated by modern compiler
technology often works much lower than hand-coded codes.
A promising code-generating strategy, used by programs such
as ATLAS, FFTW, and SPIRAL, uses powerful search to
find startup parameter values, such as tile size and tutorials,
that bring the closest performance to a particular machine.
However, this approach is already effective in scientific codes
whose performance does not depend on input data. In this
paper we learn about machine learning techniques to extend
the dynamic search in the construction of filtering practices, its
effectiveness depends on the characteristics of the installation
and construction of the intended machine. We build on previ-
ous research that selects the “pure” filtering algorithm at the
beginning of the computer as a standard deviation function.
The approach discussed in this paper uses genetic algorithms
and a classification system to create highly structured hybrid
algorithms that are able to adapt to input data. Our results show
that such algorithms generated using the method presented
in this paper are very effective in addressing the complex
interactions between building and input data features and
that the resulting code works much better than standard
programming and code developed in our previous study. In
particular, the routes made using our method work better than
all the commercial libraries we have tried to install IBM ESSL,
INTEL MKL and C ++ STL The best algorithm we have been
able to do is at an average of 26% and 62% faster than IBM
ESSL in IBM Power 3 and IBM Power 4, respectively.

V. OPTIMUM SORTING ALGORITHM

By comparing internal filtering algorithms to determine the
best for a certain number of elements, we face problems
defining what we mean by fine-tuning the algorithm. , first, we
will explain the best filtering algorithm. Although there is not
the ”best” definition of the best filtering algorithm, however,
we will describe the best to set the algorithm as its estimated
value for a comparable, dynamic number, and the exchange is
small. Indeed, all filtering algorithms are problematic means
they do well on special types as others are useful for a small
number items, some are on a larger list, some are worth
duplicates. Therefore, it is difficult function to say which filter
algorithm is best. But we are showing in this paper other
internal filtering algorithms and compare them. In this paper
we see that shortcomings of our meaning, but feel that its
simplicity provides both honesty the basis for comparing and
understanding the nature of the algorithm. We feel like ours
rating indicates better filtering effort than most commonly used
number of to compare. Studies of natural filtration difficulties
are often guided in terms of reducing the number of times.

VI. PROBLEM DEFINITION

All the sorting algorithms are problem-specific. Each sorting
algorithms work well on specific kind of problems. In this
section, we described some problems and analyses which
sorting algorithm is more suitable for that problem. As the
problem of sorting arises frequently in computer programming
and though need to be resolved in an optimizing and efficient
way. While the problem is assigned it is having some size,
so depending on that and more other user’s choices we are
proposing a method in which the user can get his problem
sorted in a most optimizing manner.

VII. OPTIMIZED ORCHAESTRATOR

To dynamically optimize the sorting we have created a
function which acts as our orchaestrator function. As we are
working on the optimization of sorting . we have divided the
whole function in few modules.

When the user enters the array to be sorted it will gets
in the main method and it will get sorted choosing the best
sorting technique matched with the user’s requirements. We
have divided the ways to be sorted on some keypoints i.e
Depends on the size of the array user enters if its little larger
lets say more than 1000 elements then it might not get ther
stability. Always in that case user could also gets the option
that if he wanted the top n sorted elements or the whole array
to be sorted. We have 2 main modules of our function:

A. Main Method

In main method we are mainly processing the user’s input.
By getting the information from the user about the size of the
array , and if the array is very large he wants the whole array
to be sorted or wants to get some top n elements.



B. Router method

This is considered to be our decisive module. In this we are
assigning the different sorting functions we have created in the
main class depending on the input given by the user. When
all the props needed by the method comes in it will assign the
most optimized sorting applicable in that condition. For ex If
the user needs stability and the array is very small then the
most optimized condition for that situation will be bubble sort
. In the above manner we have created it for all other sorting
techniques.

C. Print function

This will print the final output on the user’s screen.

Fig. 1. Architecture of our Method

VIII. CONCLUSION

In this paper, try to summarize nearly all the sorting
algorithms. Therefore, to sort a list of elements, first of all
we analyzed the given problem i.e. the given problem is of
which type (small numbers, large values). After that we apply
the sorting algorithms but keep in mind minimum complexity,
minimum comparison and maximum speed. In this paper
we also discuss the advantages and disadvantages of sorting
techniques to choose the best sorting algorithms for a given
problem. finally, the reader with a particular problem in mind
can choose the best sorting algorithm

IX. ACKNOWLEDGMENT

I cannot express enough thanks to my committee for their
continued support and encouragement: Dr. Nitin Mishra.I offer
my sincere appreciation for the learning opportunities provided
by my committee. My completion of this project could not
have been accomplished without the support of my project
partners, Khushi Gupta and Kunal Singh Teotia. – thank you
for allowing me to lead you and this wouldn’t have been
possible if you people wouldn’t have had my back at stressful
times.

Finally, to our caring parents who took great care of us in
these tough times. Your encouragement when the times got
rough are much appreciated and duly noted. It was a great
comfort and relief to know that you were willing to provide

management of our household activities while I completed my
work. My heartfelt thanks! []

REFERENCES

[1] V. Kulalvaimozhi, M. Muthulakshmi, R. Mariselvi, G. S. Devi, and
C. Rajalakshmi, “Performance analysis of sorting algorithm,” Journal of
Modern Science, vol. 7, no. 1, p. 63, 2015.

[2] A. D. Mishra and D. Garg, “Selection of best sorting algorithm,”
International Journal of intelligent information Processing, vol. 2, no. 2,
pp. 363–368, 2008.

[3] H. Dannelongue and P. Tanguy, “Efficient data structures for adaptive
remeshing with the fem,” Journal of computational physics, vol. 91, no. 1,
pp. 94–109, 1990.

[4] A. N. Trofimchuk, V. A. Vasyanin, and L. P. Ushakova, “Overview of
methods and algorithms for constructing the shortest paths and prospects
of their development,” Journal of Automation and Information Sciences,
vol. 52, no. 8, 2020.

[5] N. H. Beebe, “A complete bibliography of publications in science of
computer programming,” 2019.

[6] P. E. Battistella, C. G. Von Wangenheim, A. Von Wangenheim, and J. E.
Martina, “Design and large-scale evaluation of educational games for
teaching sorting algorithms.” Informatics in Education, vol. 16, no. 2,
pp. 141–164, 2017.

[7] B. Karsin, V. Weichert, H. Casanova, J. Iacono, and N. Sitchinava,
“Analysis-driven engineering of comparison-based sorting algorithms on
gpus,” in Proceedings of the 2018 International Conference on Super-
computing, 2018, pp. 86–95.

[8] T. Bingmann, “Scalable string and suffix sorting: Algorithms, techniques,
and tools,” arXiv preprint arXiv:1808.00963, 2018.


