ﬁ EasyChair Preprint

Ne 6415

Incremental Common Criteria Certification
Processes using DevSecOps Practices

Sébastien Dupont, Guillaume Ginis, Mirko Malacario,
Claudio Porretti, Nicold Maunero, Christophe Ponsard and
Philippe Massonet

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 26, 2021

Incremental Common Criteria Certification Processes using DevSecOps Practices

Sébastien Dupont*, Guillaume Ginis*, Mirko Malacariof, Claudio Porrettif, Nicoldo Maunero 5
Christophe Ponsard®, and Philippe Massonet*
*CETIC, Charleroi, Belgium, {sebastien.dupont, guillaume.ginis, christophe.ponsard, philippe.massonet}@cetic.be
t LEONARDO, Rome, Italy,{claudio.porretti, mirko.malacario} @leonardocompany.com
i Dipartimento di Informatica e Automatica, Politecnico di Toriono, Turin, Italy, nicolo.maunero@polito.it

§ Cybersecurity National Laboratory, Consorzio Interuniversitario per I’Informatica (CINI), nicolo.maunero@ consorzio-cini.it

Abstract—The growing digitalisation of our economies and
societies is driving the need for increased connectivity of
critical applications and infrastructures to the point where
failures can lead to important disruptions and consequences
to our lives. One growing source of failures for critical
applications and infrastructures originates from cyberse-
curity threats and vulnerabilities that can be exploited in
attacks. One approach to mitigating these risks is verifying
that critical applications and infrastructures are sufficiently
protected by certification of products and services. However,
reaching sufficient assurance levels for product certification
may require detailed evaluation of product properties. An
important challenge for product certification is dealing with
product evolution: now that critical applications and infras-
tructures are connected they are being updated on a more
frequent basis. To ensure continuity of certification, updates
must be analysed to verify the impact on certified cybersecu-
rity properties. Impacted properties need to be re-certified.
This paper proposes a lightweight and flexible incremental
certification process that can be integrated with DevSecOps
practices to automate as much as possible evidence gathering
and certification activities. The approach is illustrated on the
Common Criteria product certification scheme and a firewall
update on an automotive case study. Only the impact analysis
phase of the incremental certification process is illustrated.

Index Terms—common, criteria, devops, devsecops, certifi-
cation, incremental, security, cybersecurity

1. Introduction

The growing digitalisation of our economies and soci-
eties is driving increased connectivity of critical applica-
tions and infrastructures. The increasing reliance on these
applications and infrastructures means that any failure
can lead to important disruptions and important business,
safety, environmental or systemic consequences. One im-
portant source of failures is due to the increasing num-
ber of cybersecurity attacks on connected infrastructures
and essential services. The growing digital economy is
providing high value connected targets for cybersecurity
attackers.

Cybersecurity certification is one approach to ver-
ifying that critical applications and infrastructures that
organisations and citizens rely on for their daily activities

A preprint of this paper has been deposited on ArXiv.

are sufficiently protected and can be trusted. With the
entry into force of the EU Cybersecurity Act on June 27
2019, a EU wide cybersecurity certification framework is
under definition for information and communication tech-
nology (ICT) products, services, and processes. One of the
motivations for the adoption of this new EU regulation is
that “the limited use of certification leads to individual,
organizational and business users having insufficient in-
formation about the cybersecurity features of ICT prod-
ucts, ICT services, and ICT processes, which undermines
trust in digital solutions.” The Cybersecurity Act aims
to improve trust in products, services, and processes by
defining an EU-wide certification framework consisting of
cybersecurity certification schemes that specify common
cybersecurity requirements and evaluation criteria across
national markets and sectors.

The underlying assumption in the EU cybersecurity act
is that products, services and processes that are certified
will be viewed as more trustworthy by users. Companies
going through certification would thus benefit from a
competitive advantage. Cybersecurity certification suffers
from an image as a costly and time consuming process.
One of the keys to success for the EU cybersecurity act
is to promote standards that are lightweight, flexible and
incremental in order to encourage organisations to volun-
tarily certify their ICT products, services, and processes.

However, reaching sufficient assurance levels for prod-
uct certification may require detailed evaluation of product
properties. Cybersecurity product certification can be time
consuming and costly. An important challenge for product
certification is dealing with product evolution: now that
critical applications and infrastructures are connected they
are being updated on a more frequent basis. To ensure
continuity of certification, updates must be analysed to
verify the impact on certified cybersecurity properties.
Impacted properties need to be re-certified.

This paper proposes a lightweight and flexible incre-
mental certification process that can be integrated with
DevSecOps practices to automate as much as possible ev-
idence gathering and certification activities. The approach
is illustrated on the Common Criteria product certification
scheme and a firewall update on an automotive case
study. Only the impact analysis phase of the incremental
certification process is illustrated. This paper refines pre-
vious work [1] on the topic of incremental cybersecurity
certification.

Section 2 presents product certification challenges

linked to continuity of product cybersecurity certification
and their continuous evolution, and proposes some re-
quirements for flexible incremental certification. Section 3
presents DevSecOps practices and how they impact devel-
opment and evolution processes. Section 4 presents mod-
els of the incremental certification for Common Criteria
and the DevSecOps processes, and shows how they can be
composed together. Section 5 illustrates the approach for
the impact analysis part of incremental certification for a
firewall update in an automotive case study. Section 6 dis-
cusses process oriented certification which is an alternative
to product oriented certification, and other approaches to
incremental product certification.

2. Challenges for incremental product certi-
fication

This section provides a brief overview on the evolution
of security certifications for IT products in consideration
of their continuous evolution, identifying some require-
ments that can facilitate a flexible incremental certification
process.

2.1. Product certification and product evolution

The continuous technological evolution has brought
huge changes within our lives, now fully immersed in
IT systems (e.g. cell phones, PCs, televisions, cars). The
distance between Operational Technologies (OT) and ICT
world is shortened, improving our lives but requiring
paying more attention in security field. Cybersecurity
therefore becomes essential to protect the information
that all these interconnected devices use and share. Since
the 1980s, there has been a growing need to submit
IT products to security certifications in order to assess,
impartially, the cybersecurity posture of a product. At
that time the DoD developed the Trusted Cyber Security
Assessment Criteria, also known as the “Orange Book”
[2] which described how to perform a security certification
for IT systems, in order to ensure reliability on security
enforcing measures deployed to protect information. In
the 1990s the European Security Standard named Infor-
mation Technology Security Evaluation Criteria ITSEC)”
[3] was issued, followed at the turn of the 2000s by the
Common Criteria for Information Technology Security
Evaluation standard (now in its version 3.1 revision 5 [4]).
The security certification aims to assess the effectiveness
of security countermeasures implementations (Target of
Evaluation - TOE) by analysing a defined threat scenario,
evaluating the robustness of the mechanisms implemented
within a defined operating environment. The strength of a
security certification therefore lies in the fact that a third
party (Evaluation Laboratory) guarantees an impartial ex-
amination of the evidences produced by the developer.
Finally, an authority called the Certification Body super-
vises the certification and issues the certification. In a
more static world, modelled by a more static development
process, this approach guarantees a good confidence on
the implementation effectiveness of the security mecha-
nisms. Today, in a world where the products are constantly
evolving, due for example to the continuous need for tech-
nological updates or the release of vulnerability patches,

there is the need to face challenges of guaranteeing the
maintenance of the security certification in view of the
changes occurred.

2.2. Current practices of incremental certification
with Common Criteria

The need to shape security certifications to the contin-
uous evolution of IT products was therefore addressed by
Common Criteria within the so-called Common Criteria
Assurance Continuity [5]. Assurance continuity aims to
define a mutually recognized approach within the Com-
mon Criteria for the maintenance and re-evaluation of cer-
tified products. The assurance continuity defines a process
for carrying out an impact analysis intended to assess
the level of changes that have occurred to a certified
product. These changes are categorized into minor and
major, with the result of having to carry out a number of
different evaluation activities in terms of effort and time
on the certified product under evaluation, up to the need
for a new certification. The assurance continuity activities
involve all the players who take part in a Common Criteria
certification, starting with the sponsors and developers,
passing through the Evaluation Laboratory and finally
the Certification Body. The standard therefore provides
a methodological approach to carrying out the impact
analysis while not defining specific supporting tools or
methodologies.

2.3. Requirements for flexible incremental certi-
fication processes

It is therefore important to identify requirements that
make the incremental certification process more flexible,
even if well structured, in order to have advantages in
terms of time and cost. The first requirement that we
can consider (as described in [I] and [6]), is to adopt
a structured security development process which would
allow to guarantee a greater assurance of the certified
product since the earliest stages of requirement definition.
At the same time, an agile process must be put in place
to support the certification in all phases of the life-cycle,
considering also the very important maintenance phase
(patch management and improvement). To this extent,
methods and technologies such as DevSecOps can greatly
help in reducing costs and times by supporting the devel-
oper in the process of creating and maintaining a certified
product, in carrying out Assurance Continuity activities
and in the production of the Impact Analysis Report.
The evidences of certification could be partially produced
by means of DevSecOps’ automatic tools, by allowing
a reduction of costs and times. This would allow the
developer to take into account the impacts of the changes
in progress to the certified product and maintained simpler
during the entire life-cycle development. Moreover, the
evaluator can assess more quickly the impacts and can
obtain the necessary evidences for the maintenance of
the certification. From the point of view of the evaluator,
a good development process (including the maintenance
phase) would also ensure faster access to the evidences
necessary for the evaluation of an impact analysis. One
example of efficiency improvement could be related to

the management of minor changes. In a structured semi-
automatized process, changes not affecting the Target of
Evaluation could be evaluated faster. The assurance of the
DevSecOps process could be verified by the evaluation
laboratory during the Common Criteria evaluation of the
product in order to ensure its effectiveness for the produc-
tion of certification evidences (also when modified for the
assurance continuity). Please note that this would greatly
help concurrent evaluations as well (i.e. evaluations con-
ducted during product development).

3. DevSecOps practices

In recent years, the need to improve software delivery
in terms of speed and quality has given rise to a set of
practices that combine continuous build, testing, integra-
tion, delivery, ... The DevOps approach, closely related to
Agile software development method, integrates software
development ("Dev”) and operations ("Ops”) processes to
ensure that new features are added to a software solu-
tion in the shortest time possible, and with a high level
of quality. This approach emphasizes the importance of
communication between the involved parties, including
the whole production chain (developers, system admin-
istrators, network team, ...), to break the classic ”silos” of
specialists. DevOps relies on the "CAMS” [7] (Culture,
Automation, Measurement, Sharing) characteristics and
on a shift to the left” where aspects such as resilience or
security are taken into account as soon as possible in the
software development life cycle.

DevOps is focused on producing quality code, quickly
and reliably. The security problematic is not directly
addressed in this approach and DevSecOps is aiming
at complementing DevOps with security procedures to
ensure continuous security assessment.

The benefits of DevSecOps can impact software devel-
opment in various ways. The left-shift in security integra-
tion provides a better approach to security by intervening
earlier in the deployment cycle and thus detecting security
issues sooner, similarly the automation of security enables
a continuous monitoring of the system where vulnerabil-
ities are detected with minimal human intervention [8].
DevSecOps also provides value by reducing the cost of
making mistakes, detecting them, investigating their cause
and fixing the problems [9]. Finally, security concerns
are among the major hurdles that limit the adoption of
DevOps processes [10], DevSecOps proposes tools and
methodologies to ease this friction.

DevSecOps activities include for example threat mod-
eling and risk assessment, continuous vulnerability as-
sessment through static code analysis (SAST, SCA) and
dynamic testing (DAST, penetration, scanning, security
drills, Red Team assessment, ...). Figure 1 illustrates an
example integrated process provided by DevSecOps where
the security activities are aligned with the DevOps soft-
ware life cycle phases.

A typical DevOps pipeline iterates through the follow-
ing phases:

o PLAN - Planning activities take place before cod-
ing work starts, they include requirements gather-
ing, establishing a road map, task allocation based
on the backlog of change requests and bugs, etc.

Threat assessment
Code reviews Risk analysis Secrets management

C it Security requirements IAM
Security guidelines impact Analysis / RBAC

31vy3d0

SAST Penetration testing SIEM
SCA Vulnerability analysis DS
SOAR

Figure 1. DevSecOps - Security activities integrated with development
and operations

« CODE - Implementation of the new features, the
code is pushed to a source control repository.

e« BUILD - The new code is compiled and packaged
into a package or image.

o TEST - User acceptance, performance and load
tests are performed in testing environments in
which the new version of the system is installed.
Testing environments are ideally built following an
“Infrastructure as Code” (IaC) approach where the
environment is entirely defined through machine-
readable configuration files.

e RELEASE - The build is ready for deployment to
production, and made available for distribution in
an artifact repository.

« DEPLOY - The software is deployed to produc-
tion, using the same IaC approach used to provi-
sion the testing environments.

o OPERATE - The new version of the software
runs in production, maintenance activities include
performance or incidents troubleshooting.

¢ MONITOR - Data is collected to provide insights
on user behaviour, performance, errors, ...

The following security activities relate to the DevOps
phases described above, this list is not exhaustive and can
vary depending on the level and strategies of integration:

e PLAN - Threat assessment and risk analysis to
identify and manage threats and risks, security re-
quirements gathering and impact analysis to iden-
tify the changes needed to the security posture.

e CODE - Code reviews by peers, coding security
guidelines, ...

o« BUILD - Static Analysis Security Testing (SAST)
to find common security flaws, Software Composi-
tion Analysis (SCA) to automate the identification
of third party library dependencies for detecting
external vulnerable code.

o TEST - Vulnerability analysis and penetration test-
ing to find the system’s vulnerabilities and exploit
them. This provides insights on threats and asso-
ciated risks.

« RELEASE and DEPLOY - Secure delivery mech-
anism with artifacts repositories

OPERATE and MONITOR - Security Information
and Event Management (SIEM), Security Orches-
tration, Automation and Response (SOAR), Intru-
sion Detection Systems (IDS)

Integrating security with software development activi-
ties poses specific challenges that can explain the lack of
security testing in CI/CD workflows, for example

Speed of detection and remediation vs speed of
delivery: those two seemingly opposing goals,
“speed of delivery” and “secure code” need to
be merged into one streamlined and automated
process so that the system security is ensured
without slowing down the delivery process [1]
Seamless integration and adoption in the develop-
ment workflow: use the same or similar tools, au-
tomations and procedures that are used in DevOps
to provide an homogeneous continuous delivery
environment [12].

Prevention, detection, remediation and traceability
of unknown security issues:

— Dependencies analysis: IT systems are built
using potentially lots of external libraries,
sometimes implicitly. There is a need to au-
tomatically detect those dependencies and
analyse them

— Auditing and compliance activities: regula-
tions like HIPAA, GDPR and SOX, or stan-
dards like PCI-DSS, 1SO:27001 or Com-
mon Criteria provide guidance and rules on
security requirements, those activities need
to be integrated with the software develop-
ment life cycle and automated to facilitate
their application.

Organisational culture: help create the mindset in
the enterprise that everyone is responsible for se-
curity, integrate good practices on how to organise
and communicate quality information regarding
security [13]

4. Modeling certification processes

In this section we model the Common Criteria certi-
fication process and the DevSecOps process with activity
diagrams, and show how they can be composed for the
impact analysis phase of these processes.

4.1. Modeling certification processes

Common criteria certification [4] defines a process that
includes the following classes:

ASE (Security Target Evaluation): this class deals
with the evaluation of the consistency of the Se-
curity Target which also contains the definition of
the security requirements of the TOE.

ADV (Development): this class deals with the
evaluation of the six families of requirements for
structuring and representing the security function-
ality realized by the TOE at various levels and
varying forms of abstraction that the developer

analysis

[Impact
(PP/TOE)

must produce during the product development
phase.

AGD (Guidance Documentation): this class takes
care of the evaluation of the manuals that are
delivered to the customer.

ALC (Life-cycle support): this class evaluates all
aspects of the management of the TOE during its
life cycle; it includes maintaining the certification
via security patch management.

ATE (Tests): it is the class that takes into consid-
eration all the tests that demonstrate that security
functionalities operate according to their design
descriptions.

AVA (Vulnerability Assessment): this class takes
care of vulnerability assessment activity to analyse
vulnerabilities in the development and operation of
the TOE.

(Submit
certification ‘ Certify
__evidence J

/ De %Iog
e

Figure 3. Certification process activity diagram

Figure 2 and Figure 3 show an activity diagram that
models the incremental certification activities of the prod-
uct owner, the Common Criteria evaluator and the accred-
itation body, i.e. that delivers the official certification. The
pattern of interaction for each class is the following:

The product owner carries out normal security
engineering activities and produces certification
evidence for the evaluator;

Once the certification evidence is available, the
evaluator is notified and performs an evaluability

check. In the evaluability check the evaluator ver-
ifies that the necessary evidence is available;

o If the evaluability check is positive, then the eval-
uator performs the evaluation on the available
evidence.

In Figure 2 the incremental certification process is
triggered by the arrival of a new version of the software.
Within the ASE class a description of the update is made
and impact analysis can start. The goal of impact analysis
is to determine if incremental certification is necessary.
Once impact analysis evidence has been created, the eval-
uator makes the evaluability check. If it is positive, then
the evaluation of impact analysis evidence starts. If the
evaluability check is negative then impact analysis must
continue until it produces the required evidence. If the
evaluation of impact analysis ASE evidence is positive,
then incremental certification then moves to the ADV class
with the same type of pattern of evaluation. If the ASE
evaluation is negative, then impact analysis must continue
until the necessary evidence is created. During the de-
velopment phase certification evidence is produced and
once the developer considers the evidence as complete, the
evaluator starts the evaluability check. If the evaluability
check is positive, i.e. all the required evidence is available,
the evaluator starts the evaluation of the ADV evidence. If
the evaluation is positive, then evaluation of ATE testing
and AVA vulnerability evidence can start.

Figure 3 shows the incremental certification process
for the other Common Criteria classes. The same pattern
of evaluability and evaluation applies to the ATE, AVA,
ALC and AGD classes (the two latter are not shown).
Once the evaluator has validated the evidence from all
classes, he submits it to the accreditation body that reviews
the evidence and delivers the certification for the product
or service with respect to the security requirements spec-
ified in the protection profile (PP) or target of evaluation
(TOE).

4.2. Modeling DevSecOps processes

Figure 4 shows a sample activity diagram of DevSec-
Ops activities in the context of continuous integration and
deployment on a autonomous rover. Each step provides
results (logs, reports, ...) that can be used as certification
evidence. The sequence reads as follows:

o Upon modifying the software, the developer com-
mits the modifications to a code repository. If any
of the subsequent steps fail, the process restarts
from here with modifications to the code and
configuration.

o Static security tests such as source code or de-
pendency analysis are run on the source code.
The Static Analysis Results Interchange Format
(SARIF) and the Static Analysis Server Protocol
(SASP) [14] can facilitate the integration of the
SAST output with other tools.

o If static tests succeed, artifacts are built, deployed
into a sandbox and dynamic security tests (DAST)
are applied to the environment: vulnerability anal-
ysis, penetration testing, etc.

o If dynamic tests are successful, a risk analysis
can be performed on the system. It will take as

input the various outputs of the previous steps
(vulnerability analysis report, code analysis report,
etc.) and produce an updated risk for the software
version being released. If the risk is not acceptable,
steps must be taken to mitigate it, for example by
improving security monitoring or enforcing stricter
security rules.

e The packaged application is published in an ar-
tifact repository, and deployed to the production
environment.

2
o
o
2
=
=
a
<

Production

deployment

c o
03 = r g- &
0o TR} 238] g
] 2 2 =
c %: o L]
o 5 g g % o
E g @2 gz gg =
ts g0 ol 2 B
=}
L)I'u (7]
T
e
1 ey
= |3 |=
SIS
5 2| (2|2
al|lalla
< = c 3
a 2| (2|2
- o I =l
A
w c c c
E| |||
T 5
= g i
@ ¢ L 'y —
L 8 o
B o
8 El g
H s «| |2 Pl o | g 5
2 = 2 2 w|.a x @ =
- ol 8 = <|@ ¥ | @ 2
ag &l |8 |e = Z|E| |8
-] PEL|S E] Sl P-4 e
=w £ @ o A et = &
o o =] = £ % = =
ol |2 s 2
QO = 2 & w = b=
[} @ @ £ e = =
= a 3 a a
o @

[
|

]—~[Run static tests

[SAST failed)
[DAST failed)

[Risk Analysis

Developer
Code
Commit

Figure 4. DevSecOps process activity diagram - code, build, test, release,
deploy

4.3. Composing incremental certification and De-
vSecOps processes

Figure 5 shows the composition of the incremental
certification process model with the DevSecOps process
model for the impact analysis part of the process. The
two processes evolve in parallel but interact in the fol-
lowing general manner: the DevSecOps process produces
evidence for the certification process, and the certification
process will authorize the deployment if incremental cer-
tification is required. The incremental certification process
is triggered by a change request to update the deployed
system with a new version of a component. The change

[eileln)
Orchestration

9 . — m— Dev SAST
X 1 Ve N\ Evidence
ASE ADV [\
[Change
| request |

P [ciE Ho(
i Store
Evaluabillly e (RE ‘ SASTI Store.

Y

N | S TE——
|)

1

L Buld Arifacts |

Evaluate

|

| ‘ Deploy ‘

‘\;“ / / L grod\icuon J

Figure 5. Composed certification and DevSecOps activity diagram -
Impact Analysis

request triggers the beginning of the impact analysis in
the certification process. In the DevSecOps process the
change request triggers the code commit of the source
code and the start of static analysis activities. Part of the
static analysis results are stored as certification evidence
for the impact analysis activity. The arrow between the
”Store SAST Evidence” activity and the “Impact analy-
sis” activity will trigger the checks on the certification
evidence: when all impact analysis certification evidence
is available, the evaluability check by the evaluator can
start.

This composed process is illustrated on a concrete
firewall update example in Section 5.3: the example shows
how the impact analysis evidence is analysed to determine
if incremental certification of a automotive platooning sys-
tem is required. The ’Store SAST Evidence” will produce
the evidence illustrated in Figure 9 that will be used by
the “Impact analysis” activity to produce the tables 4 and
5. The same type of interaction between the certification
and DevSecOps processes occur for all Common Criteria
classes, but this is not described in this paper and left for
future work.

With the automation of security testing, DevSecOps
already provides some foundation for automating certi-
fication. For example static and dynamic security tests
produce reports in an automated way, those reports can be
used as certification evidence in an automated certification
process. Development documents such as architecture,
design, specifications, security model, ... are usually pro-
duced by hand, which can limit automation of the DevSec-
Ops and certification activities. Solutions for improving
the integration of those evidences in a continuous process
include the use of model based approaches to generate
the evidences: infrastructure as code for the architecture,
Business Process Model and Notation, etc.

5. Illustration of benefits with DevSecOps for
Common Criteria impact analysis

5.1. Firewall case study

In this section the incremental certification process
is illustrated on an automotive platooning case study.
Platooning is a method for a leader vehicle driving a
group of vehicles behind it. All the vehicles in the platoon
communicate together, and the leader communicates with
a traffic control center. Platooning is a safety critical
system and it is important to protect communications.

Evidence |

Certification

The communications of each vehicle are protected by a
firewall. The firewall is certified with respect to a Com-
mon Criteria protection profile that defines the security
requirements. However, firewalls need to regularly be
updated with new software versions. In the firewall update
scenario, a new version of the firewall is available and
needs to be deployed on a vehicle. From the certification
point of view, if some certified requirements are impacted
then the new firewall version must be re-certified. The
requirements listed in Table 1 below are an extract of
the security requirements from the protection profile of
the system. The security requirements might be impacted
by some of the code changed in the new version of the
firewall and this will determine the type of re-evaluation to
be performed on the new version of the system including
this firewall update. We assume that the evidences were
provided by an iteration of the DevSecOps cycle for
the TOE full certification on which we rely on for the
incremental one. Thus, a new iteration of the cycle will
provide the same updated evidences.

The changes taken as example for the firewall update
are listed in Table 2 and extracted from [15].

Requirement
FDP_ACF.1.1

Description

”The TSF shall enforce the access control to
objects based on security attributes.”

“The TSF shall enforce rules to determine if
an operation among controlled subjects and con-
trolled objects is allowed.”

”The TSF shall explicitly authorise access of sub-
jects to objects based on additional rules.”

”The TSF shall explicitly deny access of subjects
to objects based on the rules.”

”The TSF shall enforce the information flow con-
trol to limit the capacity of illicit information
flows to a maximum capacity.”

”The TSF shall prevent the following types of
illicit information flow : tcp shell or http shell.”
”The TOE shall maintain an outgoing heart-beat
data flow with other platooning vehicles as spec-
ified below: From TOE to VCS (and then to
another vehicle TOE). Messages transmitted shall
contain the following data computed from the
TOE vehicle sensors/algorithms: Vehicle unique
identifier - Vehicle speed - Direction - Geo-
Position - Timestamp.”

”The TOE shall maintain an incoming flow with
other vehicles informing the TOE vehicle about
emergency brake maneouvers as specified below:
From (another vehicle TOE to vehicle) VCS to
TOE. Messages transmitted shall contain the fol-
lowing data: Unique identifier of the vehicle to
which the emergeny brake has been issued -
Emergency brake identifier - Timestamp - Dig-
itally signed certificates.”

TABLE 1. SECURITY REQUIREMENTS

FDP_ACF.1.2

FDP_ACF.1.3

FDP_ACF.1.4

FDP_IFF.4.1

FDP_IFF4.2

PMM_IE.1.1

PMM_IE.3.1

5.2. Implementation of DevSecOps process for
impact analysis

After the delivery of a Common Criteria certified
product, the Assurance Continuity procedure as defined
in [16] can be used for maintenance and re-evaluation
activities.

The Assurance Continuity procedure as described in
[16] is made in 5 steps that allow to produce an Impact
Analysis Report (IAR) used for the re-evaluation activi-
ties:

ID| Summary| Description

2 | xtables- trace_print_rule does a rule dump. This prints
monitor unrelated rules in the same chain. Instead the
fix rule | function should only request the specific handle.
printing Furthermore flush output buffer afterwards so this

plays nice when output isnt a terminal.

3 | xtables- This prints the family passed on the command line
monitor which might be 0. Print the table family instead.
fix
packet
family
protocol

4 | nft Op- | Payload expression works on byte-boundaries
timize leverage this with suitable prefix lengths.
class-
based IP
prefix
matches

5 | nft Fix | Since commit 80251bc2a56ed chain parameter
selective | passed to nft_chain_list_get() is no longer effec-
chain tive. Before it was used to fetch only that single
compat- chain from kernel when populating the cache. So
ibility the returned list of chains for which compati-
checks bility checks are done would contain only that

single chain. Re-establish the single chain compat
checking by introducing a dedicated code path to
nft_is_chain_compatible() doing so.”

TABLE 2. FIREWALL UPDATE ISSUES

e Step 1 - Identify Certified TOE

o Step 2 - Identify and describe change(s)

o Step 3 - Determine impacted developer evidence

e Step 4 - Perform required modifications to devel-
oper evidence

e Step 5 - Conclude

The DevSecOps process will contribute to these steps
as it is the core of the configuration and of the changes im-
plemented on the solution, system or software developed.
As the same process was used for the initial certification,
it can provide updated evidences necessary for building
the Impact Analysis Report each time changes are im-
plemented. Furthermore, it can speed up the production
of evidences and the re-evaluation as all these steps are
automated starting from a commit on the source code.

Figure 4 describes the sequence of security activities in
the release starting from a source code commit resulting
from a change request. In [17], we proposed a generic
DevSecOps pipeline based on a selection of open source
tools, Figure 6 implements the DevSecOps process from
Figure 4 with a similar selection of tools:

e SAST: Frama-C is an extensible and collabora-
tive platform dedicated to source-code analysis
of C software. SonarQube is an automatic code
review tool to detect bugs, vulnerabilities, and
code smells. Eclipse Steady analyses Java and
Python applications to identify, assess and mitigate
the use of open-source dependencies with known
vulnerabilities.

e DAST: OpenSCAP is a bundle of tools dedicated
to compliance and vulnerability assessment, in
particular OpenSCAP Base performs basic opera-
tions such as configuration verification or security
scanning on local or remote systems. OpenVAS is
an open vulnerability scanner and OWASP ZAP is
an attack proxy for web apps.

c
8 &
+=]
T o
E s
e g
x <
o
— — w
£
-
S n N - @ Sa
:8 wow gg 2 o O
8 g 3¢ 2% 55 .
i:% = o8 Lz 48 E
€3 P |&a g i @
T} @ 2 .
o @ 1
.
. I.\h./’\l
o
o
0
= =/ |3 d
w = A
c [}
< Ellz|]|=
a o & %
N I N i
)
2 o
= = ‘t'.; 2
w ?‘; £ “;
& sl|E|]&
@ v
T -
—_— o
T o z
& — g L T —
I3 g =
5] 2 3
< @ = e ™ g
g = 2 = 3 |2 0| % (8] |2
=0 Ed U’g - < | '@ I 5
wS 2 < 5 5 & g |2
o pf o 8 2 o o= x| E =]
= o I & £ @ = g
O% © g 2 i (] a £ &
Co = W ol |& £ = 2 g
F-EE U] = = a k=) 7 o =
[%] =2 @) = = o
6 [a & o o
= T =
E; = E
m
. = = c
7] g
g 5 7 g
- < 4 WD
L] © E a - e
g 5
[s
a

Figure 6. DevSecOps tools - code, build, test, release, deploy

e CI/CD Orchestration: GitLab CI/CD is a tool built
for software development through continuous in-
tegration, delivery and deployment methodologies.
Jenkins is one possible alternative.

« artifact repository: JFrog Artifactory or Sonatype
Nexus provide artifact storage and distribution for
various types of artifacts (APT, RPM, Docker, ...)

« certification evidence: various pieces of evidence
can be stored into artifacts repositories or simply
in version control systems (git, svn, ...).

Before the starting point of the DevSecOps pipeline
described in Figure 6, other tools are used in the PLAN
phase such as :

« a ticket/issue manager such as JIRA, Gitlab or
Github is used to manage the changes requested
and the problems or vulnerabilities detected;

o a threat modelling and risk analysis tool such as
Threat Dragon or Threagile is used to model the
threats on the system.

In the Assurance Requirement procedure [16], the pro-
cess of the incremental certification or Common Criteria
re-evaluation is described in a single step but, in order to

make it based on a DevSecOps cycle, the impact analysis
report will preferably be generated in 2 versions for the 2
different purposes it is used :

e a preliminary version or draft will result from the
PLAN phase of the DevSecOps cycle and provide
the information necessary to decide the type of
certification needed : none, incremental, full;

e a second version before the deploy phase of the
cycle in order to have the evaluator certification
before deployment of the update.

The preliminary version of the IAR should cover the
2 first steps described in [16] : Identify Certified TOE and
Identify and Describe the changes. The first step is covered
by the configuration stored in the DevSecOps tools in the
Release phase. Artifact repository management tools, such
as JFrog Artifactory, store the artifacts generated by the
DevSecOps cycle and the configuration that was certified.
The second step is covered by the result of the Plan phase
of the DevSecOps cycle. In this phase, the issue at the
origin of the change is analysed, identifying the work to
be done in the standard DevOps cycle. Then, the impact
on security components and requirements is identified
through the threat assessment and risk analysis tools used
in the additional security layer of the DevSecOps.

The results generated by the threat assessment and risk
analysis tools would take the form of tables generated as
in Section 5.3. The previous certification shall provide the
link between Security Functional Requirements (SFRs)
and the code and components of the solution (Table 3).
This will be used as the basis of the threat assessment
and risk analysis activities. The threat assessment and risk
analysis tools will provide the list of impacted components
of the solution, reducing the number of possible impacted
SFRs (Table 4). Finally, it will provide the impacted SFRs
and a pre-filled justification that will have to be completed
manually (Table 5).

Concerning the second and final version, provided to
the evaluator for the re-evaluation, it should cover the
step 3 (determine impacted developer evidence) and 4
(perform required modifications to developer evidence)
in a simple way. All the evidences generated by the
DevSecOps tools are automatically generated so a new
version of all evidences will be created and the differences
with the previous set of evidence can be easily identified
by the tools. Links to all these evidences can easily be
added to the IAR. This final version of the TAR will
also have to include a conclusion but this process will be
done manually and is outside the scope of the DevSecOps
process and tools.

Finally, the complete process is summarized in Figure
7. It shows a developed DevOps cycle with the corre-
sponding artifacts generated by the activities of the cycle.
The artifacts useful for the incremental certification are
the following :

e PLAN : Starting from an issue in the ticket man-
agement system, this activity will provide the anal-
ysis of the issue in terms of effort, impact, etc;

o BUILD : This activity will perform unit testing,
compile the code and provide a compiled applica-
tion;

e TEST : This activity will perform functional test-
ing on the application and provide test result;

« RELEASE : This activity will create a configured
release of the application with its produced arti-
facts.

On this first DevOps layer, it adds the Security layer
making a DevSecOps cycle this time with the additional
activities performed for the security and the resulting
artifacts.

e Threat Assessment and Risk Analysis : Starting
from the issue in the ticket management system,
this activity will provide the Impacted Security
Requirements;

e SAST/SCA : This activity adds Static Tests to
the unit tests in order to verify the security of
the source code created and produce Static Test
evidences;

o« DAST : This activity add Dynamic Tests of the
application to the functional tests in order to ver-
ify the application vulnerabilities and flaws and
produce Dynamic Test evidences;

The complete description of the activities of these 2 first
layers are described in chapter 3.

Finally, the third layer is the Common Criteria layer
describing the interaction with the evaluator to perform a
re-evaluation of the solution in an incremental way. The
proposed way of working for this part is to work in 2
steps :

e a first one with preliminary evidences to decide
the type of re-evaluation that will be performed;

« a second one including all evidences produced by
the DevSecOps cycle to perform the evaluation
and provide the renewed certification.

5.3. Examples of tables that can be generated

Table 3 provides the link between all the component
of the certified solution and their associated Security
Requirements. The information allowing to build this table
should come from the first certification of the solution. If
these associations are modified a complete re-certification
is required. The Firewall contains 2 sub-components as
described in Figure 8 : iptables which manages the con-
figuration and netfilter which is the real-time component
of the firewall.

Component | Requirements
SafeSecPMM PMM_IF.1.1
SafeSecPMM PMM_IE3.1

iptables FDP_ACE.1.1
netfilter FDP_ACF.1.3
netfilter FDP_ACF.1.4
netfilter FDP_IFF4.1

netfilter FDP_IFF.4.2
iptables FDP_ACF.1.2

TABLE 3. TRACEABILITY BETWEEN SECURITY REQUIREMENTS AND
THE COMPONENTS THAT IMPLEMENT THE REQUIREMENT

Once the issue at the origin of the DevSecOps cycle
analysed, the impacted components of the solution are
known and it is possible to filter Table 3 to only provide
the impacted Security Requirements as in Table 4.

Finally, Table 5, result of the threat modeling and
risk analysis, provides the Security Requirements that

Issue
Dynamic Test
evidences

MONITOR
DAST

Logs
Compliance
report

OPERATE

Compliance Scan

Deployed
Configuration

Deployment
report

DEPLOY
Deployment checks

cc

Configuration

RELEASE

Test result

Dynamic Test
evidences

DAST

TEST

| Application

BUILD
SAST /SCA

Commit

CODE
Secure Coding

cc
Analysed
Issue

£
e > 5
SEE
g3 g

@ 5|
EGY
=57 g

&

€
H
E2
58
3%
= @@
E I .
35 4 B8
o = 2o
— w8 S
g g8
= ES
® = =
]

DevOps
Sec
cc

Figure 7. DevOps, DevSecOps and Incremental CC certification activities

iptables

Linux Kernel

Netfilter Kernel Modules
NIC1 NIC3

NIC2

Figure 8. iptables architecture

are impacted by the changes. It provides a preliminary
justification that will need to be completed manually.

For the generation of the tables 3, 4 and 5, a simple
database was designed. The idea is to find :

o the minimum information necessary;

« the relationships between these pieces of informa-
tion;

o how these pieces of information can be generated
with the tools identified in the DevSecOps process.

The database model is presented in Figure 9.

The information concerning the components of the
solution and the issues as well as their relationship is
usually available in a ticket management system like Jira.

Component | Requirements
iptables FDP_ACF.1.2
netfilter FDP_ACF.1.3
netfilter FDP_ACFE.1.4
netfilter FDP_IFF4.1
netfilter FDP_IFF4.2
iptables FDP_ACF.1.1

TABLE 4. TRACEABILITY BETWEEN SECURITY REQUIREMENTS AND
THE IMPACTED COMPONENTS

Issue Requirement Impacted Justification

2 FDP_ACF.1.2 False ”The changes to the code of
the component do not affect
the requirement as it concerns
only display.”

3 FDP_ACFE.1.2 False ”The changes to the code of
the component do not affect
the requirement as the re-
quirement is not satisfied by

this component.”

4 FDP_ACF.1.3 True ”The changes impact the com-
ponent and the implementa-

tion of the requirement ”

4 FDP_ACF.1.4 True ”The changes impact the com-
ponent and the implementa-

tion of the requirement ”

4 FDP_IFF4.1 True ”The changes impact the com-
ponent and the implementa-

tion of the requirement ”

4 FDP_IFF4.2 True ”The changes impact the com-
ponent and the implementa-

tion of the requirement ”

5 FDP_ACF.1.3 False ”The change to the code of the
component do not affect the
requirement as it is a compat-

ibility change for checks.”

5 FDP_ACFE.1.4 False ”The change to the code of the
component do not affect the
requirement as it is a compat-

ibility change for checks.”

5 FDP_IFF.4.1 False ”The change to the code of the
component do not affect the
requirement as it is a compat-

ibility change for checks.”

5 FDP_IFF4.2 False ”The change to the code of the
component do not affect the
requirement as it is a compat-

ibility change for checks.”

2 FDP_ACE1.1 False ”The changes to the code of
the component do not affect
the requirement as it concerns

only display.”

3 FDP_ACFE.1.1 False ”The changes to the code of
the component do not affect
the requirement as it concerns

only display.”

TABLE 5. IMPACT ANALYSIS RESULTS AND JUSTIFICATION

6. Discussion and future work

6.1. Cybersecurity product vs process certifica-
tion

In a market where agility, reduced time to market
and constant update are at the foundation of basically
every software product or service (especially in the cloud
ecosystem), security certification needs to adapt to this
fast-paced environment. The major limitation of certifica-
tions, nowadays, is that they are still too statically linked
to the product itself and to the particular version of the
product with respect to which the certification is issued.

ty
Threat Model
Risk analysis tools

Issue

Issues_Securi'

s 5 ¢ 5
=3 =1 @ =
5 5 E % 8 o 2 . _ %
E £ o £ & § 8 ! = ©§ &
E 2 2 8 § 5§ £ 2 4 8
S 8§ @ 3 € & = 7 @ g— u
8 @ o @ w < E = Q & ¢ E 3
W s
=]
£ 58
v 53 u c 8
5 £8 E =2
] 25 i mE
] F = =1
- = 3 Ed
I 3 £z
- 1 0 L4
£ K] g 4
g ! g
g
s [=Jrat € £
E o i 3 =
3 E 3 o g &
v S @ 8 Fg
g o & /\
: @
' -2
AV N 58
-g Dg
£) =2
= E g2
- = Ed
: & F3
c | o
8 -
E g
<
G S c a
[¥] =) S. =]
2 5 E 2=
§ 8] & 8
8 z o F vle 6w
A T
'
'
'

Figure 9. IAR minimal database model

In fact, the main problem, e.g., Common Criteria, is that
it is virtually impossible to adopt this type of certification
for products that see a new release, and therefore a total
re-certification, practically every day. To overcome this
problem, the adoption of an incremental approach has
been growing: after the certification of a given product,
it will be no longer necessary to re-issue a complete
certification process after each update or modification, but
only those modified part of the product, that invalidate
the certification, are put through the certification process,
avoiding to re-issue the process for the entire product.
However, a “classic” approach to incremental certifica-
tions is not yet sufficient to guarantee the necessary flex-
ibility in the modern market. It is here that the proposal
to certify not the product, but the process of developing
a product finds its space [!8]. Therefore, the objective
is to try shifting the focus of the certification process
not to something that is constantly evolving, the product,
but to something that currently sees less sudden changes,
which is the development process used. A process-centric
methodology has the potential to easily scale and adapt
to an agile development model, evaluating how a product
or service was developed and used with respect to what
was developed. Focusing on the development process it is
possible to gather all the necessary details and information

on how a product is developed, hence also how the best
practice and methodologies, in terms of cybersecurity,
are adopted and applied. By certifying the development
process it is possible to guarantee, to a certain degree,
the security level of a given product, while more classical
certification schemes (e.g. Common Criteria) should be
applied only for the product or system integrated in high
risk environment, where a longer lifetime for the installed
technology components is expected.

6.2. Other approaches to incremental certifica-
tion

An early approach to incremental certification was to
consider a full certification was too much to achieve in
one step [19]. This was proposed at a time were security
was far less critical and companies has a low level of
maturity to implement security certification. Nowadays
such an approach is addressed through the notion of
risk in a process-oriented certification approach described
previously. The ISO 27005 actually defines the risk man-
agement as an iterative process. In a given context, risks
can be partially mitigated, ignored or transferred but there
is also a monitoring activity that will trigger new risk
analysis and treatment process [20]. Nowadays step-wise
partial certification is not recommended in a certification
context but it can make sense in a more general process,
for example in a SME context it can lead to certification
by first considering more lightweight approaches of self-
assessment and non-certifying audits, [21].

A test-based assurance scheme supporting incremental
security certification has been defined for Cloud systems
[22]. Although focusing on a specific domain, the ap-
proach relies on a similar process of assessing the impact
of changes on the target of evaluation (TOE) system (i.e.
the cloud application) and also on the certification process.
The goal of the proposed solution is to minimizes the
risk of unnecessary certificate revocation and to reduce as
much as possible the amount of re-certification activities.
This is achieved through reuse of evidence available in
existing certificates to re-validate them when relevant
changes are observed. Although not explicitly mentioning
a DevSecOps approach, this work is clearly in this spirit
by replaying the test processes able to regenerate all
necessary evidence that might be impacted by a change.
The work relies on a sound modelling of the process based
on a Certification Model (CM) template that is signed by
the certification authority and which is instantiated on a
specific TOE context by the accredited lab and the service
provider. Different techniques of instance reduction, graph
matching and annotation matching used to support the
initial certification process. In order to perform dynamic
and incremental certification, based on a formalised de-
scription of the change, it is possible to perform partial
reevaluation and re-certification execution flows. Certifica-
tion refinement through upgrade or downgrade processes
are also supported. The approach could help refining our
own recertification scheme although the fact that it is
specific to the Cloud domain while our approach targets
a larger scope might limit the applicability or level of
automation. However our tight integration in a DevOps
chain will definitely help raise overcome such barriers.

Incremental certification has also been considered in
the safety domain, especially in avionics where it is
mandatory to comply with the standards such as DO178
(for software) and DO254 (for hardware) (see [23]). A
model-based approach was developed in the S@T Belgian
project using a modelling approach to capture certification
goals, the product using a product line model and a model
of the certification process [24]. However the considered
scenario is based on explicit change requests rather than
dynamic evolution of the environment or discovery of
vulnerabilities. While it shares some commonalities in the
way to assess impact, it was not integrated in a strong
DevOps automation process and was also considering
less frequent and coarser grained evolution. Despite this,
it highlights the benefits of model-based approach for
impact assessment, the replay of specific V&V activities
and the generation of incremental evidence reports. A
more recent work elaborates further by considering a
larger adoption of agile processes, continuous integration,
delivery and deployment [23]. It stresses that standard
do no impose any lifecycle and can thus consider more
agile processes although the traditional V-shaped is cur-
rently the mainstream approach. It shows the rigorous
activities required can be carried out in agile mode so
that a certification-ready solution can be delivered at each
iteration. For example, maintaining a clean traceability is
possible and even more efficient using an agile process.
Comparing this approach in safety with our proposal for
security reveals some common principles in the technical
approach but also differences in the recertification sce-
narios. There is also a cultural difference which needs
to be addressed when considering co-engineering and co-
certification which were not elaborated in the scope of the
paper. However learning from the way safety is managed
in an aircraft to keep the system operational in presence
of failure can also inspired how to design security to avoid
failing over and over again on the same kind of attack. [25]
identifies five recommendations for a ‘clean slate policy
design’ in response to the current state of verbose and
hardly followed best practices. It is complemented with
an incident handling and reporting structure similar to that
found in aviation safety.

7. Conclusions

This paper has proposed to integrate Common Crite-
ria incremental certification and DevSecOps processes in
order to automate evidence gathering for product oriented
certification activities. The approach was illustrated on
the impact analysis of an automotive case study where
firewall updates can trigger incremental certification with
Common Criteria when certified cybersecurity properties
are impacted. The case study was illustrated only on the
impact analysis of the incremental certification process
to show how the DevSecOps can provide the evidence
needed for the evaluator to decide if incremental certifi-
cation is needed. The other activities of the incremental
certification process are left for future work. The main
contributions of the paper are (1) modelling the Common
Criteria incremental process and (2) composing it with a
development and operations process such as DevSecOps.
The expected benefits are to have a more flexible and
automated incremental certification process that leads to

a reduction in costs in carrying out this type of activity.
A longer term expected benefit is to improve the global
security posture by having a greater number of updated
certified products continuously available on the market.

Acknowledgment

This paper was supported in part by European Union’s
Horizon 2020 research and innovation programme under
Grant Agreement No. 830892, project “Strategic pro-
grams for advanced research and technology in Europe”
(SPARTA).

References

[1] A. Morgagni, P. Massonet, S. Dupont, and J. Grandclaudon,
“Towards incremental safety and security requirements co-
certification,” in IEEE European Symposium on Security and Pri-
vacy Workshops (EuroS PW), 2020, pp. 79-84.

[2] N. C. S. Association, “Department of defense trusted computer
system evaluation criteria,” Tech. Rep. CSC-STD-001-83, 12 1985.

[3] O. for Official Publications of the European Communities, “Infor-
mation technology security evaluation criteria (itsec) provisional
harmonised criteria,” Tech. Rep. COM(90) 314, 6 1991.

[4] C.C. portal, “Common criteria for information technology security
evaluation. part 1: Introduction and general model, part 2: Security
functional components and part 3: Security assurance components,”
Tech. Rep. CCMB-2017-04-001, CCMB-2017-04-002, 4 2017.

[5] ——, “Common criteria, assurance continuity: Ccra requirements,”
Tech. Rep. version 2.1, 6 2012.

[6] C.Zhou and S. Ramacciotti, “Common criteria: Its limitations and
advice on improvement,” Information Systems Security Association
ISSA Journal, pp. 24-28, 2011.

[71 D. Edwards, “What is devops,” Retrieved, vol. 3, p. 2014, 2010.

[8] . Diaz, J. E. Pérez, M. A. Lopez-Pefia, G. A. Mena, and A. Yagiie,
“Self-service cybersecurity monitoring as enabler for devsecops,”
IEEE Access, vol. 7, pp. 100283-100295, 2019.

[9] H. Myrbakken and R. Colomo-Palacios, “Devsecops: a multivocal
literature review,” in International Conference on Software Process
Improvement and Capability Determination. Springer, 2017, pp.
17-29.

[10] V. Mohan and L. Othmane, “Secdevops: is it a marketing buz-
zword,” Department of Computer Science, Technische Universitdt
Darmstadt, Darmstadt, 2016.

[11] B. Rahul, K. Prajwal, and M. Manu, “Implementation of devsec-
ops using open-source tools,” International Journal of Advance
Research, Ideas and Innovations in Technology, vol. 5, no. 3, 2019.

[12] N. MacDonald and I. Head, “Devsecops: How to seamlessly inte-
grate security into devops,” Gartner, Tech. Rep., 2016.

[13] N. Tomas, J. Li, and H. Huang, “An empirical study on culture,
automation, measurement, and sharing of devsecops,” in 2079
International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). 1EEE, 2019, pp. 1-8.

[14] GrammaTech, “Static analysis results: A format and a
protocol: Sarif & sasp,” https://blogs.grammatech.com/
static-analysis-results-a-format-and-a-protocol-sarif-sasp, 2018.

[15] P. S. Florian Westphal, Pablo Neira Ayuso, “Iptables 1.8.7
changelog,” https://www.netfilter.org/projects/iptables/files/
changes-iptables-1.8.7.txt, 2021.

[16] C. Criteria, “Assurance continuity: Ccra requirements,” Common
Criteria, pp. 0-22, 2012.

[17] S. Dupont et al., “Sparta - d5.1 - assessment specifications
and roadmap,” https://sparta.eu/assets/deliverables/SPARTA-DS.
1-Assessment-specifications-and-roadmap-PU-M12.pdf, [Online;
accessed 02-June-2021].

https://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://www.netfilter.org/projects/iptables/files/changes-iptables-1.8.7.txt
https://www.netfilter.org/projects/iptables/files/changes-iptables-1.8.7.txt
https://sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf
https://sparta.eu/assets/deliverables/SPARTA-D5.1-Assessment-specifications-and-roadmap-PU-M12.pdf

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

L. Volkmar, “Sparta - di1.2 - cybersecu-
rity compliant development processes,” https:
/Iwww.sparta.eu/assets/deliverables/SPARTA-D11.
2-Cybersecurity-compliant-development-processes- PU-M18.pdf,
[Online; accessed 20-May-2021].

S. V. Solms and R. V. Solms, “Incremental information security
certification,” Comput. Secur., vol. 20, pp. 308-310, 2001.

ISO, “Iso/iec 27005:2018 information technology — security tech-
niques — information security risk management.”

C. Ponsard, P. Massonet, J. Grandclaudon, and N. Point, “From
lightweight cybersecurity assessment to SME certification scheme
in belgium,” in IEEE European Symposium on Security and
Privacy Workshops, EuroS&P Workshops 2020, Genoa, Italy,
September 7-11, 2020. 1EEE, 2020, pp. 75-78. [Online].
Available: https://doi.org/10.1109/EuroSPW51379.2020.00019

M. Anisetti, C. A. Ardagna, and E. Damiani, “A test-based incre-
mental security certification scheme for cloud-based systems,” in
IEEE International Conference on Services Computing, 2015, pp.
736-741.

C. Baron and V. Louis, “Towards a continuous certification of
safety-critical avionics software,” Computers in Industry, vol. 125,
p. 103382, Feb. 2021.

C. Ponsard et al., “Smarter airborne technologies,” https:/www.
cetic.be/SAT-1161, 2014.

T. Fiebig, “How to stop crashing more than twice: A clean-
slate governance approach to it security,” in 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), 2020,
pp. 67-74.

https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-development-processes-PU-M18.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-development-processes-PU-M18.pdf
https://www.sparta.eu/assets/deliverables/SPARTA-D11.2-Cybersecurity-compliant-development-processes-PU-M18.pdf
https://doi.org/10.1109/EuroSPW51379.2020.00019
https://www.cetic.be/SAT-1161
https://www.cetic.be/SAT-1161

	Introduction
	Challenges for incremental product certification
	Product certification and product evolution
	Current practices of incremental certification with Common Criteria
	Requirements for flexible incremental certification processes

	DevSecOps practices
	Modeling certification processes
	Modeling certification processes
	Modeling DevSecOps processes
	Composing incremental certification and DevSecOps processes

	Illustration of benefits with DevSecOps for Common Criteria impact analysis
	Firewall case study
	Implementation of DevSecOps process for impact analysis
	Examples of tables that can be generated

	Discussion and future work
	Cybersecurity product vs process certification
	Other approaches to incremental certification

	Conclusions
	References

